期刊文献+

云变异人工蜂群算法 被引量:9

Artificial bee colony algorithm based on cloud mutation
下载PDF
导出
摘要 针对传统人工蜂群算法存在收敛速度慢和易陷入局部最优的问题,提出一种基于云模型的改进人工蜂群算法。通过正态云算子计算候选位置,自适应调整算法的局部搜索范围,以提高算法的收敛速度和勘探能力。为保持种群多样性,引入一个新的概率选择策略,使较差的个体具有较大的选择概率,并且利用历史最优解探索新的位置。标准复合函数测试表明,改进算法的收敛速度和求解精度得到提升,优于一些新近提出的改进人工蜂群算法。 Traditional Artificial Bee Colony (ABC) algorithms suffer from the problem of slow convergence and easy stagnation in local optima. An improved ABC algorithm based on cloud model, was proposed to solve the problem. By calculating a candidate food source through the normal cloud particle operator and by reducing the radius of the local search space, the proposed algorithm can enhance the convergence speed and exploitation capability. In order to maintain diversity, a new selection strategy that makes the inferior individual have more chances to be selected was introduced. In addition, the best solution found over time was used to explore a new position in the algorithm. A number of experiments on composition functions show that the proposed algorithm has been improved in terms of convergence speed and solution quality, and is better than some recently proposed improved ABC algorithms.
出处 《计算机应用》 CSCD 北大核心 2012年第9期2538-2541,共4页 journal of Computer Applications
基金 福建省自然科学基金资助项目(2010J01329) 福建省高校产学合作科技重大项目(2010H6012)
关键词 云模型 人工蜂群算法 全局优化 群体智能 早熟收敛 cloud model Artificial Bee Colony (ABC) algorithm global optimization swarm intelligence premature convergence
  • 相关文献

参考文献19

  • 1KARABOGA D. An idea based on honey bee swarm for numerical optimization, TR06 [ R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 2KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algo- rithm[ J]. Journal of Global Optimization, 2007, 39(3) : 459 -471.
  • 3KARABOGA D, BASTURK B. On the performance of Artificial Bee Colony (ABC) algorithm[ J]. Applied Soft Computing, 2008, 8(1) : 687 - 697.
  • 4胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982. 被引量:63
  • 5毕晓君,王艳娇.加速收敛的人工蜂群算法[J].系统工程与电子技术,2011,33(12):2755-2761. 被引量:44
  • 6KARABOGA D, AKAY B. Artificial bee colony algorithm on train- ing artificial neural networks[ C]// Proceedings of the 15 th IEEE Signal Processing and Communications Applications Conference. Piseataway, NJ: IEEE Press, 2007:1-4.
  • 7KARABOGA D , AKAY B , OZTURK C . Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural net- works[ C]// Proceedings of Modeling Decisions for Artificial Intelli- gence Conference. Berlin: Springer-Verlag, 2007:318-319.
  • 8KARABOGA D. A new design method based on artificial bee colony algorithm for digital IIR filters[ J]. Journal of the Franklin Institute, 2009, 346(4) : 328 -348.
  • 9SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [ J]. Applied Soft Computing, 2009, 9(2) : 625 -631.
  • 10KARABOGA D, AKAY B. A comparative study of artificial beecolony algorithm [ J]. Applied Mathematics and Computation, 2009, 214(1) : 108 - 132.

二级参考文献60

共引文献675

同被引文献71

  • 1Hai-bin Duan,Xiang-yin Zhang,Jiang Wu,Guan-jun MaSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,P.R.China.Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments[J].Journal of Bionic Engineering,2009,6(2):161-173. 被引量:33
  • 2李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1250
  • 4胡建军,唐常杰,彭京,陈宇,元昌安,刘齐宏.快速跳出局部最优的VPS-GEP算法[J].四川大学学报(工程科学版),2007,39(1):128-133. 被引量:13
  • 5FERREIRA C. Gene expression programming: a new adaptive algo- rithm for solving problems [ J ]. Complex Systems,2001,13 (2) :87- 129.
  • 6WANG Shang-guang, ZI-IENG Zi-bin, SUN Qi-bo, et al. Cloud mo- del for service selection [ C ]//Proc of IEEE INFOCOM Workshop on Cloud Computing. [ S. 1. ] :IEEE Press,2011:677-682.
  • 7MICHALEWICZ Z. Genetic algorithms + data structures = evolution programs[ M ]. Berlin : Springer-Verlag, 1999:349-350.
  • 8FERREIRA C. Gene expression programming [ EB/OL ]. ( 2002 ). ht- tp://www, gene-expression-programming, eom/gep/GepBook/Chap- ter4/Seetionl/SS2, htm.
  • 9Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri,Turkey:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.1-10.
  • 10Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC)algorithm[J].Journal of Global Optimization,2007,39(3):459-471.

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部