期刊文献+

基于粒子群的反鱼雷算法设计与仿真 被引量:1

Design and Simulation of an Anti-torpedo algorithm Based on Particle Swarm Optimization
原文传递
导出
摘要 在潜艇遭遇鱼雷攻击进行机动规避的过程中,针对潜艇防御鱼雷时水声对抗器材的优化配置问题,研究了一种典型的反鱼雷对抗策略,并建立了对抗过程中相关实体的运动及水声探测模型,在此基础上将粒子群算法用于对抗过程中四个决策变量的智能整定,对使用水声对抗器材与潜艇的规避有机结合的对抗策略进行合理优化,结合蒙特卡洛法对算法进行设计和仿真。通过比较,采用粒子群算法的反鱼雷对抗策略可以提高潜艇的生存概率,对研究水下作战中潜艇防御鱼雷具有实际的参考意义。 When the submarine was attacked by torpedo and in the mean time it had to properly maneuver, due to the optimal allocation problem for the acoustic warfare equipment, a typical anti-torpedo counterplan was studied, the movement and water acoustic detection models in the course were built, and on this base, the particle swarm optimization (PSO) algorithm was applied in the intelligent tuning of the four controller parameters, so as to optimize the counterplan reasonably which used acoustic warfare equipments and submarine evasion, then combined with the Monte Carlo method, algorithm was design and simulation was conducted. By comparison, it can greatly improve the survival probability of the submarines by using the strategy that PSO algorithm is adopted, which has practical significance to defense torpedo for the submarine in the undersea warfare.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第9期2023-2026,共4页 Journal of System Simulation
基金 船舶预研支撑技术基金(11J4.1.1)
关键词 反鱼雷 粒子群 蒙特卡洛 水声对抗 anti-torpedo particle swarm optimization Monte-Carlo acoustic warfare
  • 相关文献

参考文献11

  • 1Kierstad D, Delbalzo D. A genetic algorithm applied to planning search paths in complicated enviroments [J]. Military Operations Research (S0275- 5823), 2003, 8(2): 45-59.
  • 2Armo K R. The relationship between a submarine's maximum speed and its evasive capability [D]. Monterey, CA, USA: Operations Research Department, Naval Post- graduate School, 2000.
  • 3高学强,杨日杰,张林琳.反鱼雷方案对抗效能定量评价模型[J].探测与控制学报,2010,32(2):88-91. 被引量:4
  • 4Liang Kohsin, Wang Kueiming. Using simula- tion and evolutionary algorithms to evaluate the design of mix strategies of decoy and jammers in anti-torpedo tactics [C]// Proceeding of the 2006 Winter Simulation Conference. USA: WSC, 2006.
  • 5高学强,杨日杰.运用遗传算法的反鱼雷对抗优化方案研究[J].哈尔滨工程大学学报,2010,31(10):1286-1292. 被引量:8
  • 6胡建秀,曾建潮.二阶微粒群算法[J].计算机研究与发展,2007,44(11):1825-1831. 被引量:21
  • 7Higasshi N, Iba H. Particle Swarm Optimization with Gaussian Mutation [C]// Proe of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003. USA: IEEE, 2003: 72-79.
  • 8J Kennedy, W M Spears. Matching algorithms to problems: an experimental test of particle swarm and some genetic algorithms on the multimodal problem generator [C]// Proc. IEEE Int. Conf. on Evolutionary Computation, Anchorage, AK, USA, 1998. USA: IEEE, 1998: 78-63.
  • 9Peter J Angeline. Evolutionary optimization versus particle swarm optimization: philosophy and performance difference [C]//Pro. of the 7th Annual Conf. on Evolutionary Programming, London, UK: Springer-Verlag, 1998: 601-610.
  • 10陈春玉,张静远,王明洲,等.反鱼雷技术[M].北京:国防工业出版社,2006.

二级参考文献23

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2贾跃,宋保维,李文哲.火箭深弹拦截鱼雷理论与方法研究[J].系统工程理论与实践,2005,25(4):137-140. 被引量:11
  • 3Armo K R.The relationship between a submarine's maximum speed and its evasive capability[D].Monterey CA:Operations Research Department,Naval Post-graduate School.
  • 4KIERSTEAD D, DELBALZO D. A genetic algorithm applied to planning search paths in complicated environments [J]. Military Operations Research, 2003,8 (2) :45-59.
  • 5LIANG K H, NEWTON C S. Evolutionary algorithms for design optimization of anti-submarine search problem[ C ]// The 5th International Conference on Simulated Evolution And Learning (SEAL04). Busan, Korea, 2004.
  • 6ARMO K R. The relationship between a submarine's maximum speed and its evasive capability [ D ]. Monterey : Naval Post-graduate School ,2000.
  • 7LIANG KoHsin, WANG KueiMing. Using simulation and evolutionary algorithms to evaluate the design of mix strategies of decoy and jammers in anti-torpedo tactics [ C ]// Proceedings of the 2006 Winter Simulation Conference [s. l. ],2006.
  • 8GOLDBERG D E. Genetic algorithm in search, optimizing & machine learning [ M ]. Boston : Addison Wesley, 1989 : 189-195.
  • 9J Kennedy,R C Eberhart.Particle swarm optimization[C].In:Proc of the IEEE Int'l Conf on Neural Networks,Ⅳ.Piscataway,NJ:IEEE Press,1995.1942-1948
  • 10J Kennedy.The behavior of particles[C].In:Evolutionary Programming.Berlin:Springer-Verlag,1998.581-590

共引文献127

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部