期刊文献+

动态系统的一阶特征模型与直线伺服系统的自适应迭代学习控制 被引量:4

THE FIRST-ORDER CHARACTERISTIC MODELS OF DYNAMIC SYSTEMS AND ADAPTIVE ITERATIVE LEARNING CONTROL OF LINEAR SERVO SYSTEMS
原文传递
导出
摘要 就线性定常/时变系统以及非线性系统,依据特征模型理论,给出动态系统的一阶特征模型.其特征参数随时间变化,即以一阶时变差分方程描述受控系统的动态特性;与二阶和三阶特征模型相比较,一阶模型具更少参数.为解决由一阶特征模型描述的系统的控制问题,提出基于遗忘因子迭代学习辨识的自适应迭代学习控制方法.迭代学习辨识适于时变参数的估计,它允许被估计参数随时间快速变化,抑或突变.以直线伺服系统的位置跟踪控制为例,给出一种基于特征模型与LQ最优控制策略的自适应迭代学习控制方案.仿真与实验结果表明,提出的控制方案能够有效实现受控系统的位置跟踪控制. This paper presents the first-order time-varying difference equation, the characteristic model. Only two parameters are involved in the equation. The adaptive iterative learning control method is suggested to deal with the characteristic-model based control problem, where the learning identification Mgorithms with a forgetting factor are introduced to estimate the time-varying unknowns. For PMLSM servo-systems, in this paper, an adaptive iterative learning control scheme is proposed based on the LQ optimal control strategy. Numerarid expereimeat results are presented to demonstrate effectiveness of the control scheme.
出处 《系统科学与数学》 CSCD 北大核心 2012年第6期666-682,共17页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60874041 61174034)资助
关键词 特征模型 遗忘因子 迭代学习辨识 自适应迭代学习控制 直线伺服系统. Characteristic models, forgetting factor, iterative learning identification,adaptive iterative learning control, linear servo systems.
  • 相关文献

参考文献26

二级参考文献51

  • 1孙多青,吴宏鑫.三阶时变离散系统的一致渐近稳定性[J].宇航学报,2004,25(5):502-506. 被引量:4
  • 2吴宏鑫,刘一武,刘忠汉,解永春.Characteristic modeling and the control of flexible structure[J].Science in China(Series F),2001,44(4):278-291. 被引量:19
  • 3孙多青,吴宏鑫.多变量线性系统的特征模型及控制方法[J].航天控制,2004,22(6):4-10. 被引量:10
  • 4钟国民.啤酒发酵全系数自适应控制[J].自动化学报,1987,13(6):441-444.
  • 5Richards J A. Analysis of Periodically Time-Varying Sys- tems. New York: Springer-Verlag, 1983.
  • 6Tsakalis K S, Ioannou P A. Linear Time-Varying Systems: Control and Adaptation. Upper Saddle River, N J: Prentice- Hall, 1993.
  • 7Goodwin G C, Sin K S. Adaptive Filtering, Prediction and Control. Englewood Cliffs, N J: Prentice-Hall, 1984.
  • 8Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston, MA: Birkhauser, 1991.
  • 9郭雷.随机时变系统:稳定性、估计与控制.长春:吉林科学技术出版社,1993.
  • 10Sternby J. On consistency for the method of least squares using martingale theory. IEEE Transactions on Automatic Control, 1977, 22(3): 346-352.

共引文献120

同被引文献42

  • 1MENG Bin &WU HongXin National Laboratory of Space Intelligent Control,Beijing Institute of Control Engineering,Beijing 100190,China.On characteristic modeling of a class of flight vehicles'attitude dynamics[J].Science China(Technological Sciences),2010,53(8):2074-2080. 被引量:12
  • 2陆华才,徐月同,杨伟民,陈子辰.永磁直线同步电机进给系统模糊PID控制[J].电工技术学报,2007,22(4):59-63. 被引量:56
  • 3吴宏鑫,胡军,解永春.基于特征模型的智能自适应控制.北京:中国科学技术出版社,2008.
  • 4孟斌,吴宏鑫.线性定常系统特征模型的证明[J].中国科学(E辑),2007,37(10):1258-1271. 被引量:24
  • 5Wu H X, Hu J, Xie Y C. Characteristic model-based all-coefficient adaptive control method and its applications. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Application and Reviews, 2007, 37(2): 213-221.
  • 6Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140.
  • 7Sadegh N, Horowitz R, Kao W W, et al. A unified approach to design of adaptive and repeti- tive controllers for robotic manipulators. ASME Journal of Dynamic Systems, Measurement and Control, 1990, 112(4): 618-629.
  • 8Park B H, Kuc T Y, Lee J S. Adaptive learning control of uncertain robotic systems. International Journal of Control, 1996, 65(5): 725-744.
  • 9French M, Rogers E. Nonlinear iterative learning by an adaptive Lyapunov technique. Interna- tional Journal of Control, 2000, T3(10): 840-850.
  • 10Qu Z H, Xu J X. Asymptotic learning control for a class of cascaded nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2002, 47(8): 1369-1376.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部