期刊文献+

Al掺杂ZnO纳米棒的性能研究及其在太阳能电池中的应用 被引量:12

Properties of Al-doped ZnO nanorods and the application in organic photovoltaic devices
原文传递
导出
摘要 通过水热法制备了不同质量分数(0%,0.5%,1.0%和1.5%)的Al 3+掺杂ZnO纳米棒,扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见(UV-vis)吸收光谱等测试结果表明,通过这种方法得到了较为规整的ZnO纳米阵列,结晶良好、具有明显的c轴生长取向;掺杂浓度的增加对产物的形貌和晶体结构产生了明显的影响。通过瞬态光谱和面电阻测试发现,Al 3+掺杂提高了ZnO传导电子的能力。将Al 3+掺杂的ZnO纳米棒同时作为电极与电子传输层,应用于有机太阳能电池器件中,在低浓度(0.5at.%)掺杂时得到最佳的器件性能,相比于未掺杂的ZnO纳米棒,短路电流提高了30%,光电转化效率提高了50%。 We fabricated the ZnO nanorods with different Al3+-doped concentrations of 0 %, 0.5 %, 1.0 % and 1.5 %, respectively. The morphology and the crystalline of/M-doped ZnO nanorods are investigated by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The optical and electrical properties are researched by ultraviolet-visible (UV-VIS) absorption spectroscopy,time-resolved photo- luminescence (TRPL) spectroscopy and sheet resistance. The analysis indicates that the ZnO nanorods are orderly arrayed and have good crystallinity. As the Al3+ doped concentration increasing,the conductivity of ZnO is improved and the electron transfer between donor and acceptor becomes faster. Finally, Al-doped ZnO nanorods are incorporated in the organic photovoltaic devices as both cathode and electron conductive layer. The optimized device (at lower doping of 0.5%) shows 30% higher Jsc and 50% higher photoelectric conversion efficiency (PCE) compared with the device without Al doping.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第9期1786-1791,共6页 Journal of Optoelectronics·Laser
基金 天津市科技创新体系及条件平台建设计划(10SYSYJC28100) 天津市应用基础及前沿技术研究计划(青年基金项目12JCQNJC01300) 天津市高等学校科技发展基金计划(20100723)资助项目
关键词 Al3+掺杂 ZNO纳米棒 光电性能 有机太阳能电池 Al3+-doped ZnO nanorodl photoelectric properties organic photovoltaic device
  • 相关文献

参考文献19

  • 1Zhang F,Xu X,Tang W,et al. Recent development of the inverted configuration organic solar cells[J]. Solar Energy Materials and Solar Cells,2011,95(7):1785-1799.
  • 2Huang J, Yin Z, Zheng Q. Applications of ZnO in organic and hybrid solar cells[J]. Energy and Environmental. Science. ,2011,4(10) ,3861-3877.
  • 3Liu J,Wang S,Bian Z,et al. Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires[J]. Applied Physics Letters, 2009,94(17) : 173107-09.
  • 4Chen C T,Hsu F C,Kuan S W,et al. The effect of C60 on the ZnO-nanorod surface in organic-inorganic hybrid photovoltaics[J]. Solar Energy Materials and Solar Cells, 2010,95(2) :740-744.
  • 5Chou C Y,Huang J S,Wu C H,et al. Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells [J]. Solar Energy Materials and Solar Cells,2009,93(9) :1608-1612.
  • 6宋朋飞,秦文静,丁国静,闫齐齐,杨利营,印寿根.An air-stable inverted photovoltaic device using ZnO as the electron selective layer and MoO_3 as the blocking layer[J].Optoelectronics Letters,2011,7(5):330-333. 被引量:5
  • 7谢轲,蔡宏琨,陶科,胡居涛,靳果,张德贤.柔性PEN衬底ZnO:Ga薄膜的性能研究[J].光电子.激光,2011,22(11):1663-1666. 被引量:6
  • 8彭福川,吕佩伟,林林,林丽梅,瞿燕,赖发春.低压高温退火对Ag掺杂ZnO薄膜性质的影响[J].光电子.激光,2011,22(4):545-549. 被引量:9
  • 9Jeong S H, Park B N, Yoo D,et al. Al-ZnO thin films as transparent conductive oxides: synthesis, characterization, and application tests [J]. Journal-Korean Physical Society, 2007,50(3) : 622-625.
  • 10Fortunato E, Ginley D, Hosono H, et al. Transparent conducting oxides for photovoltaics[J]. MRS Bulletin, 2007, 32(3) : 242-247.

二级参考文献44

  • 1邓雷磊,吴孙桃,李 静.ZnO薄膜的制备和结构特性及应变[J].发光学报,2006,27(6):922-926. 被引量:4
  • 2C. J. Brabec, N. S. Sariciflci and J. C. Hummelen, Advanced Functional Materials 11, 15 (2001).
  • 3S. E. Shaheen, D. S. Ginley and G. E. Jabbour, MRS Bull 30, 10 (2005).
  • 4G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nature Materials 4, 864 (2005).
  • 5A. J. Moul and K. Meerholz, Advanced Materials 20,240 (2008).
  • 6B. Thompson, Chem., lnt. Ed. 47 (1), 58-77 (2008).
  • 7Z. Q.Wang, x. M. Wu, N. Jing, J. Wei and S. G. Yin, Optoelectronics Letters 5, 173 (2009).
  • 8J. Huang, G. Li and Y. Yang, Adv. Mater. 20, 415 (2008).
  • 9Y. F. Lira, S. Lee, D. J. Herman, M. T. Lloyd, J. E. Anthony and G. G. Malliaras, Applied Physics Letters 93, 193301 (2008).
  • 10W. W. Ming, B. K. Woo, Z. Tian and W. L. Zhang, Optoelectronics Leffers 5, 430 (2009).

共引文献20

同被引文献107

  • 1陈林,彭国良,宋杰光,刘悦,张西岭,向芸.Ce3+掺杂纳米ZnO的制备及其可见光光催化性能研究[J].化工新型材料,2020,48(1):200-206. 被引量:7
  • 2徐春祥,陈丽媛,朱光平,刘松琴,谷保祥.基于ZnO纳米线的酪胺酸霉生物传感器研究[J].功能材料信息,2007,4(5). 被引量:1
  • 3周雄图,曾祥耀,张永爱,郭太良.Al掺杂四针状ZnO纳米结构的制备及其光致发光和场发射特性[J].发光学报,2013,34(11):1424-1429. 被引量:6
  • 4史小龙,赵小如,孙慧楠,段利兵,刘金铭,陈安琪.Sn掺杂对ZnO薄膜结构和光电性能的影响[J].人工晶体学报,2012,41(S1):280-284. 被引量:4
  • 5WANG ChunXiao1,2,ZHANG XiaoDan1,WANG DongFeng1,YANG ZhenHua1,2,JI WeiWei1,ZHANG CunShan2 & ZHAO Ying1 1 Institute of Photo-electronic Thin Film Devices and Technology of Nankai University,Key Laboratory of Photo-electronic Information Science and Technology(Nankai University),Ministry of Education,Tianjin 300071,China,2 College of Information Engineering,Hebei University of Technology,Tianjin 300130,China.Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells[J].Science China(Technological Sciences),2010,53(4):1146-1149. 被引量:8
  • 6Jenny Nelson. The physics of solar cells[M]. London: Im- perial College Press, 2003,1-18.
  • 7Paul G,Wolfram K,Martin C,et al. Approach to the physi-cal origin of breakdown in silicon solar cells by optica spectroscopy[J]. J. Appl. Phys. ,2010,108(].2) :123"703.
  • 8Peter Wurfel. The physics of solar cells[M]. Weinheim, Wiley VCH, 2005,1-].0.
  • 9Andreas Mandelis, Yu Zhang, Alexander Melnikov. Statis- tical theory and applications of lock-in carrierographic im- age pixel brightness dependence on multi-crystalline Si solar cell efficiency and photovoltage[J]. J. Appl. Phys., 2012,(112) :054505.
  • 10Mandelis Andreas, Batista Jerias, Shaughnessy Derrick. Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects [J]. Physical Review B, 2003,67 (20) : 205208.

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部