期刊文献+

基于DAISY描述符和改进型权重核的快速局部立体匹配 被引量:7

Fast Local Stereo Matching via DAISY Descriptor and Modified Weight Kernel
下载PDF
导出
摘要 为了消除双目立体歧义,提出一种基于DAISY特征和改进型权重核的快速立体匹配。首先,稠密构造局部特征DAISY描述计算初始匹配成本;基于Epanechnikov权重核双通聚合消除特征相似歧义得可靠匹配代价;优胜者全选逐像素优化初始视差。然后,利用改进型双边滤波、对称一致性验证和多方向权重视差外插等策略改善视差。实验表明,该方法能有效提高匹配精度,得到分段光滑、精度高的稠密视差,且结构简单、复杂度低。 A fast stereo matching based on DAISY feature descriptor and modified weight kernel is proposed to eliminate the ambiguity of binocular stereo problem.Firstly,the local DAISY feature descriptors of both stereo pairs are constructed fast and densely for initial matching costs being calculated from the features;two-pass aggregation with Epanechnikov weight kernel for the reliable costs are applied to resolve ambiguity of matching feature similarities;each pixel's initial disparity is obtained via Winner-Takes-All optimization from them.Secondly,in order to improve the quality of disparity map,we adopt sequentially the refining procedures with modified bilateral filtering,symmetric consistency check and multi-directional weighted disparity extrapolation.The experiments indicate that this technique with concise structure and low complexity can improve effectively the matching accuracy and obtain comparably accurate and piecewise smooth dense disparity map.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第4期70-76,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61001152 61071166 61071091 61172118) 江苏省自然科学基金(BK2010523) 江苏省高校自然科学基金(11KJB510012) 南京邮电大学校科研基金(NY210053 NY210069 NY210073)资助项目
关键词 立体匹配 DAISY描述符 Epanechnikov权重核 双边滤波 视差外插 stereo matching DAISY descriptor Epanechnikov weight kernel bilateral filtering disparity extrapolation
  • 相关文献

参考文献18

  • 1RICHARD S. Computer vision: Algorithms and applications [ M ].New York : Springer,2010:533 - 650.
  • 2DANIEL S,RICHARD S. A taxonomy and evaluation of dense two- frame stereo correspondence algorithms [ J ]. International Journal of Computer Vision,2002,47 ( 1/3 ) :7 - 42.
  • 3STAN B, CARLO T. A pixel dissimilarity measure that is insensitive to image sampling [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (4) :401 - 406.
  • 4LOWED G. Distinctive image features from scale-invariant key- points [ J ]. International Journal of Computer Vision, 2004,60 (2) : 91 -110.
  • 5BAY H, ESS A, TUYTELAARS T, et al. SURF: Speeded up robust features [ J ]. Computer Vision and Image Understanding, 2008, 110(3) :346 -359.
  • 6ENGIN T,VINCENT L,PASCAL F. DAISY:An efficient dense de- scriptor applied to wide-baseline stereo [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 ( 5 ) : 815 - 830.
  • 7YOON K J, KWEON I S. Adaptive support-weight approach for cor- respondence search [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28 (4) :650 - 656.
  • 8GU Zheng, SU Xianyu, LIU Yuankun, et al. Local stereo matching with adaptive support-weight, rank transform and disparity calibra- tion [ J ]. Pattern Recognition Letters,2008,29 ( 9 ) : 1230 - 1235.
  • 9FEDERICO T, STEFANO M, LUIGI D S. Segmentation-based adap- tive support for accurate stereo correspondence[ C ]//IEEE Pacific- Rim Symposium on Image and Video Technology. 2007:427 -438.
  • 10刘天亮,罗立民.一种基于分割的可变权值和视差估计的立体匹配算法[J].光学学报,2009,29(4):1002-1009. 被引量:11

二级参考文献32

  • 1C. Lawrence Zitnick, Sing Bing Kang. Stereo for image-based rendering using image over-segmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65
  • 2Daniel Scharstein, Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/ 2/ 3): 7-42
  • 3Andreas Klaus, Mario Sormann, Konrad Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]. IEEE International Conference on Pattern Recognition, 2006. 15-18
  • 4Stan Birchfield, Carlo Tomasi. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406
  • 5Heiko Hirschmüller. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341
  • 6Kuk-Jin Yoon, In So Kweon. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656
  • 7Gu Zheng, Su Xianyu, Liu Yuankun et al.. Local stereo matching with adaptive support-weight, rank transform and disparity calibration[J]. Pattern Recognition Letters, 2008, 29(9): 1230-1235
  • 8Federico Tombari, Stefano Mattoccia, Luigi Di Stefano. Segmentation-based adaptive support for accurate stereo correspondence[C]. IEEE Pacific-Rim Symposium on Image and Video Technology, 2007. 427-438
  • 9Jong Dae Oh, Siwei Ma, C.-C. Jay Kuo. Stereo matching via disparity estimation and surface modeling[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2007. 1696-1703
  • 10Dorin Comaniciu, Peter Meer. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619

共引文献11

同被引文献74

  • 1Harris C, Stephens M. A combined corner and edge detector [C]// Alvey vision conference. 1988,15 : 50.
  • 2Mikolajezyk K, Sehmid C. Scale & affine invariant interest point deteetors[J]. International journal of computer vision, 2004,60 (1):63-86.
  • 3Lowe D G. Distinctive image features from seale-invariant key- points[J]. International journal of computer vision, 2004, 60 (2):91-110.
  • 4Bay H,Tuytelaars T,Van Gool L. Surf: Speeded up robust fea- tures[M]//fComputer Vision-[CCV 2006. Springer Berlin Hei- delberg, 2006 : 404-417.
  • 5Juan L,Gwun O. A comparison of sift, pca-sift and surf[J]. In- ternational Journal of Image Processing (IJIP), 2009,3 (4) : 143- 152.
  • 6Tola E, Lepetit V, Fua P. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2010,32(5) : 815 -830.
  • 7Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features[M]//Computer Vision-[CCV 2010. Springer Berlin Heidelberg, 2010 : 778-792.
  • 8I.eutenegger S,Chli M,Siegwart R Y. BRISK: Binary robust in- variant scalable keypoints[C]//2011 IEEE International Con- ference on Computer Vision (ICCV). IEEE, 20112548-2555.
  • 9Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012 : 510-517.
  • 10Guo Y, Mu Z C, Zeng H, et al. Fast Rotation-Invariant DAISY Descriptor for Image Keypoint Matching[C]//2010 IEEE Inter- national Symposium on Multimedia (ISM). IEEE, 2010 : 183-190.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部