期刊文献+

大规模有限元刚度矩阵存储及其并行求解算法 被引量:4

PARALLEL SOLVING LARGE-SCALE LINEAR SYSTEM OF FEM BASED ON COMPRESSED STORAGE FORMAT
原文传递
导出
摘要 本文提出一种将有限元单元刚度矩阵直接集成压缩格式的总体刚度矩阵的方法,并针对其线性系统设计了预处理的重启动GMRES(m)并行求解器.集成方法使用了一个"关联结点"的数据结构,它用来记录网格中节点的关联信息,作为集成过程的中间媒介.这种方法能减少大量的存储空间,简单且高效.求解器分别使用Jacobi和稀疏近似逆(SPAI)预条件子.二维和三维弹性力学问题的数值试验表明,在二维情形下,SPAI预条件子具有很好的加速收敛效果和并行效率;在三维情形下,Jacobi预条件子更能减少迭代收敛时间. A technique to assemble element stiffness matrix to global stiffness matrix stored in compressed storage format and two parallel preconditioned Restarted GMRES (m) solvers for sparse linear systems based on FEM are presented. The assembly method uses a data structure named associated node which record the information about the connection of nodes in the mesh as intermediaries. This method can save large memory and is simple and effective. The solvers are preconditioned by Jacobi and sparse approximate inverse (SPAI) preconditioner, respectively. Numerical experiments about 2D and 3D elasticity mechanics problems show that SPAI preconditioner is more effective to reduce the number of iterations and has good parallel efficiency for 2D problem, and Jacobi preconditioner can reduce more convergence time for 3D problem.
出处 《数值计算与计算机应用》 CSCD 2012年第3期230-240,共11页 Journal on Numerical Methods and Computer Applications
基金 国家基础研究计划(2010CB832702) 国家自然科学基金(10972215)资助
关键词 有限元 压缩格式 预条件子 GMRES FEM compressed storage format preconditioner GMRES
  • 相关文献

参考文献11

  • 1Grote M and Huckle T. Parallel preconditioning with sparse approximate inverses[J]. SIAM J. Sci. Comput., 1997, 18(3): 838-853.
  • 2Saad Y. Iterative Methods for Sparse Linear Systems[M]. Boston: PWS, 1996.
  • 3Jonathan Richard Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator," in Applied Computational Geometry: Towards Geometric Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of Lecture Notes in Computer Science, pages 203-222, Springer-Verlag, Berlin, May 1996. (From the First ACM Workshop on Applied Compu- tational Geometry.).
  • 4http://tetgen.berlios.de/index.html.
  • 5Gould N I M and Scott J A. Sparse approximate-inverse preconditioners using no- rm-minimization techniques[J]. SIAM J. Sci. Comput. 1998, 19(2): 605-625.
  • 6Rajasankar J and Nagesh R. Iyer. A procedure to assemble only non-zero coeffici-Ents of global matrix in finite element analysis[J]. Computer & structures. 2000, 77(3): 595-599.
  • 7Jocelyne Eerhel. A parallel GMRES version for general sparse matrices[J]. Electronic Transactions on Numerical Analysis, 1995, 3: 160-176.
  • 8Smith I M and Griffiths D V. Programming the Finite Element Mehod[M]. New Jersey: John Wiley & Sons Inc, 1998.
  • 9Sam:l Y. A flexible inner-outer preconditioned GMRES algorithm[J]. SIAM J. Sci. Statist. Com- pute., 1993, 14: 461-469.
  • 10GOLUB G. Numerical methods for solving linear least squares problems[J]. Nu-Mer. Math., 1965, 206-216.

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部