期刊文献+

基于自适应学习的多目标粒子群优化算法 被引量:10

Multi-objective particle swarm optimization algorithm based on self-adaptive learning
下载PDF
导出
摘要 将进化算法应用于某些多目标优化问题时,采用增加种群规模和进化代数的方法往往耗费大量的目标函数计算开销,且达不到提高种群进化效率的目的,为此提出了一种基于自适应学习最优搜索方向的多目标粒子群优化算法。采用自适应惯性权值平衡算法的全局和局部搜索能力,采用聚类排挤方法保持Pareto非支配解集的分布均匀性,使用最近邻学习方法为每个粒子在Pareto非支配解集中寻找一个最优飞行目标来提高其收敛速度并保持粒子群搜索方向的多样性。实验结果表明,提出的算法可在显著地降低函数评估成本的前提下实现快速的搜索,并使粒子群均匀地逼近Pareto最优面。 When evolutionary algorithm is applied to multi-objective optimization problems,it often requires a large population size and a large number of evolution generation.However,it consumed plenty of computation overhead of evaluating objective functions but just resulted in poor improvement of the search efficiency.This paper proposed a multi-objective particle swarm optimization algorithm based on self-adaptive learning of optimal search directions.The algorithm used the self-adaptive inertia weights to get the trade-off between the global and local search.And it used the clustering crowding to maintain the uniform distribution of the non-dominated Pareto solutions.And the algorithm incorporated the nearest neighbor rule to seek the best target in the non-dominated Pareto solutions to get the optimal flying direction for each particle,it sped the flying of single particle and kept the diversity of the flying directions for the particle swarm.The experimental results show that the algorithm can drive the particle swarm to approximate quickly and uniformly to the Pareto front,and decrease the evaluation cost of objective functions significantly
出处 《计算机应用研究》 CSCD 北大核心 2012年第9期3232-3235,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60975049 30971540) 湖南省自然科学基金重点资助项目(11JJ2037)
关键词 粒子群优化 多目标优化 自适应惯性权值 聚类排挤 最优搜索方向学习 particle swarm optimization multi-objective optimization self-adaptive inertia weight clustering crowding learning optimal search direction
  • 相关文献

参考文献11

  • 1KENNKDY J,KBEHHART R. Particle swarm optimization!; C]//Proc of IEEE International Conference on Neural Network. Piscataway: IEEE Press ,1995: 1942-1948.
  • 2ALVARKZ-BKNITEZ J,EVERSON R. A MOPSO algorithm based exclusively on Pareto dominance concepts [ C ] //Lecture Notes in Computer Science, Vol 3410. Berlin:Springer,2005 :459-473.
  • 3COELLO C A C.LECHUGA M S. MPS():a proposal for multiple objective particle swarm optimization [ C ]//Proc of IEEE Congress on Evolutionary Coinpution. Washington DC: IKEE Computer Society, 2002:1051-1056.
  • 4MOSTACHIM S,TEICH J. Strategies for finding gootl local guides in multi-ol)jective particle swarm optimization ( MOPSO) [ C ]//Proc of IEEE Swarm Intelligence Symposium. 2003 :26-33.
  • 5GUO Guan-qi GUI Wei-hua WU Min YU Shou-yi.Niching method using clustering crowding[J].Journal of Central South University of Technology,2005,12(z1):203-209. 被引量:1
  • 6Z1TZLKR E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach [ J ]. IEEE Trans on Evolutionary Computation, 1999,3(4) :257-271.
  • 7郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 8ZITZI.EK K,DKB K,THIELE L. Comparison of multi-objective evolutionary algorithm:empirical results[ J]. Evolutionary Computation, 2000,8(2) :173-195.
  • 9ZITZLEH E,LAUMANNS M, THIELE L. SPKA2: improving the strength Pareto evolutionary algorithm [ C ]//Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Prol)-lems. Berlin: Springer-Verlag, 2002 :95-100.
  • 10DEB K,PRATAP A,AGARWAL S’祝 al. A fast and elitist multi-objective genetic algorithm:NSGA- H [ J]. IEEE Trans on Evolutionary Computation,2002,6(2) : 182-197.

二级参考文献24

  • 1[1]Goldberg D E,Richardson J.Genetic algorithms with sharing for multimodal function optimization[A].Proc2nd Iht Conf Genetic Algorithms[C].1987.41-49.
  • 2[2]Jelasity M.GAS,a concept on modeling species in genetic algorithms[J].Artificial Intelligence,1998,99(1):1-19.
  • 3[3]DeJong K A.An analysis of the behavior of a class of genetic adaptive systems[D].Univ of Michigan,Ann Arbor,1975.
  • 4[4]Mahfoud S W.Niching Methods for genetic algorithms[D].Univ of Illinois,Urbana-Champaign,1995.
  • 5[5]Mengshoel O J,Goldberg D E.Probabilistic crowding:deterministic crowding with probabilistic replacement,Illinois Genetic Algorithms Laboratory [R].Univ of Illinois,Urbana-Champaign,Tech.Rep.99004,Jan.1999.
  • 6[6]Ursem R.Multinational evolutionary algorithms[A].Proc 1999 IEEE Int Conf Evolutionary Computation[C].1999.1633-1640.
  • 7[7]Gan J,Warwick K.Dynamic niche clustering:a fuzzy variable radius niching technique for multimodal optimization in GAs[A].Proc 2001 IEEE Iht Conf Evolutionary Computation[C].2001.215-222.
  • 8[8]Sareni B,Krahenbuhl L.Fitness sharing and niching methods revisited[J].IEEE Trans Evolutionary Computation,1998,2(1):97-106.
  • 9[9]Pétrowski A.A clearing procedure as a niching method for genetic algorithms[A].Proc 1996 IEEE Int Conf Evolutionary Computation[C].1996.798-803.
  • 10Coello Coello CA,Van Veldhuizen DA,Lamont GB.Evolutionary Algorithms for Solving Multi-Objective Problems.Kluwer Acedemic/Plenum Publishers,2002.

共引文献53

同被引文献103

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部