期刊文献+

基于改进蚁群算法的周期多帧任务分配 被引量:2

Partitioning periodic multi-frames tasks based on improved ant colony algorithm
下载PDF
导出
摘要 研究一组多帧任务在异构多核处理平台上的分配,使得所有任务得以完成并耗费更少的时间。建立了带约束条件的异构多核周期多帧任务模型,运用蚁群算法来解决任务分配优化问题。其中结合了遗传算法中的复制、交叉、变异等遗传因子,以提高算法的收敛速度和全局搜索能力;改进了信息素的更新方式,以使算法在执行过程中可以根据收敛及进展情况动态地调整信息素残留程度,加快寻找最优解的能力;此外还引入了一种确定性搜索方法,以加快启发式搜索的收敛速度。实验证明,使用改进后的蚁群算法在解决异构多核平台上的多帧任务分配问题时,可以有效且快速地求得问题的最优解或近似最优解,并且拥有更低的时间复杂度。 Given a set of multi-frame tasks and a heterogeneous multi-processor processing platform,the problem was to determining whether the tasks could be partitioned among the processors in such a manner that all timing constraints were met.This paper constructed a heterogeneous multi-processors periodic multi-frame task model with constraints and proposed an improved ant colony algorithm to solve the partition optimization problem of periodic multi-frames tasks among heterogeneous multi-processors.It introduced several genetic operators,such as reproduction,crossover and mutation,into the ant colony algorithm to enhance the converging rate and global search capability.To improve the self-adaptability of the algorithm,it modified pheromone updating strategy by dynamically adjusting the pheromone residual according to the progress of the algorithm convergence.Additionally,it introduced a deterministic search approach into the algorithm to accelerate the converging rate of the heuristic method.The experimental result proves that it can obtain an optimal or nearly optimal solutions to the multi-frame task allocation in heterogeneous multi-processor quickly with the improved ant colonyalgorithm,which has lower time-complexity as well
出处 《计算机应用研究》 CSCD 北大核心 2012年第9期3251-3254,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60973030)
关键词 异构多核 多帧任务 蚁群算法 heterogeneous multi-processors multi-frames tasks ant colony algorithm
  • 相关文献

参考文献16

  • 1BORKAR S. Design challenges of technology scaling [ J ] . Micro-IEEE,1999,19(4) :23-29.
  • 2WOLF W. The future of multiprocessor systems-on-chips[ C]//Proc ofthe 41st Annual Design Automation Conference. 2004 :681-685.
  • 3BARUAH S K. Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor platforms [ C ] //Proc of the 25 th IEEE International Real-time Systems Symposium. 2004 : 37 - 46.
  • 4MOK A K,CHEN De-ji. A multiframe model for real-time tasks[ C]// Proc of the 17th IEEE Real-time Systems Symposium. 1996,22-29.
  • 5COSKUN A K, ROSINGT S, WHISNANTK A,et al. Temperature-aware MPSoC scheduling for reducing hot spots and gradients[ C]// Proc of Design Automation Conference. 2008 ;49-54.
  • 6JOO Y P,KIM S,HA S. On-chip communication architecture explora-tion for processor-pool-based MPSoC[ C]//Proc of Conference on the Design, Automation & Test in Europe. 2009 ;466-471,.
  • 7MAHESWARAN M,ALI S,SIEGEL H J,et al. Dynamic matching andscheduling of B class of independent tasks onto heterogeneous computing systems [ C ] //Proc of the Bth IEEE Heterogeneous Computing Workshop. 1999 : 30-44.
  • 8DORIGO M,BIRATTARI M, STUTZLE T. Ant colony optimization [J]. IEEE Computational Intelligence Magazine,2006,1 (4): 28-39.
  • 9FERRANDI F,PILATO C’SCIUTO D,et al. Mapping and schedulingof parallel C applications with ant colony optimization onto heterogeneous reconfigurable MPSoCs[ C ] //Proc of the 15 th Design Automation Conference. 2010:799-804.
  • 10张维泽,林剑波,吴洪森,童若锋,董金祥.基于改进蚁群算法的物流配送路径优化[J].浙江大学学报(工学版),2008,42(4):574-578. 被引量:57

二级参考文献22

  • 1杨瑞臣,云庆夏.改进的蚁群算法在矿山物流配送路径优化中的研究[J].中国钼业,2004,28(6):16-18. 被引量:7
  • 2马军建,董增川,王春霞,陈康宁.蚁群算法研究进展[J].河海大学学报(自然科学版),2005,33(2):139-143. 被引量:21
  • 3陈海军,陈铁英.混合遗传算法在路径选择问题的应用[J].计算机与数字工程,2005,33(4):91-95. 被引量:5
  • 4柳林,朱建荣.基于遗传算法的物流配送路径优化问题的研究[J].计算机工程与应用,2005,41(27):227-229. 被引量:18
  • 5ORDA A, SPRINTSON A. A sealable approach to the partition of QoS requirements in unicast and mulieast[ J]. IEEE/ACM Trans on Net- working ,2005,13 (5) : 1146-1159.
  • 6WANG Zheng, CROWCROFT J. Quality of service routing for sup- porting multimedia applications [ J ]. IEEE Journal on Selected Areas in Communications, 1996,14 (7) : 1228-1234.
  • 7ZHANG Biao-xian, LIU Yue, CHEN Chang-jia. An efficient delay- constrained multicast routing algorithm [ C ]//Proc of International Conference on Communication Technology Proceedings. 2000: 1244- 1247.
  • 8HWANG R H, DO W Y, YANG S C. Multicast routing based on genet- ic algorithms[J]. Journal of Information Science and Engineer- ing, 2008,16(6) :885-901.
  • 9BULLNHEIMER B, HARTL R F, STRAUSS C. An improved ant system algorithm for the vehicle routing problem [J]. Annals of Operations Research, 1999, 897 319 - 328.
  • 10DORIGO M, MANIEZZO V, COLNMI A. Ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-part B, 1996, 26(1): 29-41.

共引文献60

同被引文献22

  • 1彭晓明,郭浩然,庞建民.多核处理器——技术、趋势和挑战[J].计算机科学,2012,39(S3):320-326. 被引量:20
  • 2Gupta S, Agarwal G, Kumar V. Task scheduling in multi-processor system using genetic algorithm[C] //Proc of the 2nd International Conference on Machine Learning and Computing. [S. l.] :IEEE Press, 2010:267-271.
  • 3Omidi A, Rahmani A M. Multiprocessor independent tasks scheduling using a novel heuristic PSO algorithm[C] //Proc of the 2nd IEEE International Conference on Computer Science and Information Technology. 2009:369-373.
  • 4Kaur R, Singh G. Genetic algorithm solution for scheduling jobs in multiprocessor environment[C] //Proc of Annual IEEE India Confe-rence. 2012:968-973.
  • 5Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J] . Water Resources Planning and Management, 2003, 129(3):210-225.
  • 6Ebrahimi J, Hosseinian S H, Gharehpetian G B. Unit commitment problem solution using shuffled frog leaping algorithm[J] . IEEE Trans on Power Systems, 2011, 26(2):573-581.
  • 7Wu Yang, Sun Yuanshu. An improved shuffled frog leaping algorithm for grid task scheduling[C] //Proc of International Conference on Network Computing and Information Security. [S. l.] :IEEE Press, 2011:342-346.
  • 8Chen Minrong, Li Xia, Wang Na, et al. An improved shuffled frog-leaping algorithm for job-shop scheduling problem[C] //Proc of the 2nd International Conference on Innovations in Bio-inspired Computing and Applications. [S. l.] :IEEE Press, 2011:203-206.
  • 9Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms[J] . Advanced Engineering Informatics, 2005, 19(1):43-53.
  • 10余伶俐,蔡自兴.改进混合离散粒子群的多种优化策略算法[J].中南大学学报(自然科学版),2009,40(4):1047-1053. 被引量:19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部