期刊文献+

正则化保局鉴别分析方法 被引量:2

Regularized Locality Preserving Discriminant Analysis
原文传递
导出
摘要 提出一种正则化保局鉴别分析方法(RLPDA)并将其应用于人脸识别.受样本有限制约和大量噪声干扰,保局类内散布矩阵的零特征值及小特征值估计不准确,进而影响鉴别保局投影算法的性能.结合倒数谱模型对保局类内散布矩阵的特征值进行正则化,并利用正则化后的特征值对相应的特征空间加权,使人脸空间被保留,噪声空间被削弱,而零空间则被加强.通过分析鉴别信息在数据空间的分布可发现,RLPDA方法有效利用整个特征空间的鉴别信息,有利于提高算法的识别精度,同时从原理上回避小样本问题.在FERET和UMIST人脸数据库上的识别结果表明,RLPDA是一种有效的人脸特征提取方法. A regularized locality preserving discriminant analysis (RLPDA) for face recognition is proposed. Affected by the small sample size (SSS) problem and noises, zero eigenvalues and small eigenvalues of locality preserving within-class scatter matrix are inadequate. It degrades the performance of discriminant locality preserving projections (DLPP). In this paper, eigenvalues of locality preserving within-class scatter matrix are regularized by a reciprocal spectrum model, and the subspaces are weighted according to the regularized eigenvalues. Specifically, the face subspace is kept, the noise subspace is weakened, and the zero subspace is enhanced. Through the analysis of the distribution of discriminant information in data space, it is found that RLPDA utilizes the whole discriminant information. Hence, RLPDA improves the recognition accuracies and avoids the SSS problem in principal. The experimental results on FERET and UMIST face databases illustrate the effectiveness of the proposed RLPDA algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第4期581-587,共7页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2007AA01Z423) 重庆市重点科技攻关项目(No.CSTC2009AB0175) 中央高校基本科研业务费项目(No.CDJZR10120010 CDJXS10122218) 高等学校博士学科点专项科研基金项目(No.20100191120012)资助
关键词 保局鉴别分析 正则化 特征提取 人脸识别 Locality Preserving Discriminant Analysis, Recognition Regularization, Feature Extraction, Face
  • 相关文献

参考文献17

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face Recognition: A Lit- erature Survey. ACM Computing Surveys, 2003, 35 (4): 399-458.
  • 2辜小花,龚卫国,杨利平.有监督图优化保局投影[J].光学精密工程,2011,19(3):672-680. 被引量:8
  • 3林克正,王慧鑫,卜雪娜,林晟.基于局部保持投影的鉴别最大间距准则[J].模式识别与人工智能,2010,23(2):178-185. 被引量:17
  • 4Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cogni- tive Neuroscience, 1991, 3 ( 1 ) : 71-86.
  • 5Belhumeur P, Hesoanfa J, Kiregeman D. Eigenfaces vs. Fisherfaces : Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 6Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extrac- tion and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (2) : 230-244.
  • 7Zhang Sheng, Sire T. Diseriminant Subspace Analysis: A Fukuna- ga-Koontz Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1732-1745.
  • 8Lu Juwei, Plataniotis K N, Ventsanopoulos A N. Regularization Studies of Linear Discrirninant Analysis in Small Sample Size Sce- narios with Application to Face Recognition. Pattern Recognition Letters, 2005, 26(2) : 181-191.
  • 9Jiang Xudong, Mandal B, Kot A. Eigenfeature Regularization and Extraction in Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(3): 383-394.
  • 10Kim S K, Toh K A, Lee S. Two-Fold Regularization for Kernel Fisher Discriminant Analysis in Face Recognition. IEICE Electron- ics Express, 2009, 6(9) : 540-545.

二级参考文献35

共引文献50

同被引文献48

  • 1庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 2TURK M A, PENTLAND A P. Face recognition using eigenfaces[C ] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Maui: IEEE Computer Society, 1991:586 - 591.
  • 3BELHUMEUR P N ,HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherface: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7) :711 -720.
  • 4RAUDYS S J,JAIN A K. Small sample size effects in statistical pat- tern recognition : Recommendation for practitioners [ J ]. IEEE Transactions on Pattern Analysis And Machine Inteligence, 1991,13 (3) : 252 - 264.
  • 5YU H, YANG J. A direct LDA algorithm for high-dimensional data with application to face recognition [J ]. Pattern Recognition, 2001, 34(10) :2067 -2070.
  • 6LU J, PLATANIOTISK K N, VENETSANOPOULOS A N. Regulari- zation studies of linear discriminant analysis in small sample size scenarios with application to face recognition [ J ]. Pattern Recogni- tion Letters,2005,26 ( 2 ) : 181 - 191.
  • 7LI H F, JIANG T, ZHANG K S. Efficient and robust feature extration by maximum margin criterion [ J ]. IEEE Transactions on Neural Networks ,2006,17 ( 1 ) : 157 - 165.
  • 8ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by lo- cally linear embedding [ J ]. Science,2000,290:2323 - 2326.
  • 9BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re- duction and data representation [ J ]. Neural Computation, 2003,15 (6) :1373 - 1396.
  • 10TENENBAUM J B, SILVE V D, LANGFORD J C. A global geo- metric framework for nonlinear dimensionality reduction [ J ]. Sci- ence ,2000,290:2319 - 2323.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部