期刊文献+

基于重采样的胸部CT图像肺实质自动分割 被引量:1

Automatic segmentation of lung parenchyma from thoracic CT based on image resampling
下载PDF
导出
摘要 目的胸部CT图像的肺实质自动分割是肺部疾病计算机辅助检测的重要基础。为提高分割速度,本文提出并实现了一种基于重采样的分割算法。方法首先对数据重采样,提取部分(1/8)体数据。再基于重采样体数据,通过阈值分割、胸腔提取、气管剔除、血管填充、左右肺分离和肺壁结节填充等步骤,得到初步分割结果。然后将该结果还原到完整数据体上,形态学平滑后即完成最终分割。最后将算法应用于20例患者数据(2556个断层),并与放射科医生手动分割结果进行比较。结果本文算法对20例患者数据均能取得优异结果,与放射科医生手动分割的平均面积重叠率达99.02%,且适用于左右肺相连、肺壁存在结节、视野不完整等异常情况。通过数据重采样极大缩短分割时间,一般可缩短50%,一帧图像平均耗时小于0.25s。结论本文算法能够实现胸部CT图像肺实质的自动分割,结果准确可靠,鲁棒性好,速度快,基本满足实际临床需求。 Objective Automatic lung parenchyma segmentation is one of the most important steps in the computer aided diagnosis (CAD) of the lung. To increase segmentation speed, an algorithm based on resampling of the image data is proposed and implemented. Methods The algorithm firstly resamples and extracts a small part (1/8) of the original CT images data. Several steps are implemented to get preliminary segmentation with the resampled data, which include simple threshold segmentation, body region elimination, trachea extraction, removal of interior cavities, left-right lung separation and lung nodule filling. The final results are obtained after projecting the preliminary segmentation to the original dataset and morphology smoothing. The proposed algorithm is applied to 20 patients' data (2556 slices) , and the results are compared to the manual segmentations. Results The algorithm can get accurate results with an average area overlapped ratio 99.02% to the manual segmentation by the radiologist, and works well for the abnormal cases (right-left connected, with nodules and uncompleted views ) . Through resampling, the time consumption of the algorithm is shortened significantly, typically by 50%, and the processing for one slice image is less than 0.25 s. Conclusions The proposed automatic lung parenchyma segmentation algorithm with excellent robustness and high speed, can get accurate result and satisfy the requirements of current clinical applications.
出处 《北京生物医学工程》 2012年第4期349-355,共7页 Beijing Biomedical Engineering
基金 国家自然科学基金(61071213 51006021)资助
关键词 肺实质 重采样 CT图像 分割 计算机辅助诊断 lung parenchyma resampling CT image segmentation computer aided diagnosis
  • 相关文献

参考文献15

  • 1Tseng Linyu, Huang Liehin. An adaptive thresholding method for automatic lung segmentation in CT images [ C ] // IEEE Africon, Nairobi, 2009: 1-5.
  • 2Li Ke, Yang Dan, Wang Xu. An improved target extraction algorithm based on region growing for Lung CT Image [ C ]. // IEEE International Conference on Complex Medical Engineering, 2007 : 595-599.
  • 3Sdbastien Vauclin, Zhang Peng, Isabelle Gardm, et al. Segmentation of thoracic computed tomography images [ C ]. // Proceedings of IEEE Congress otl Signals, Circuits and Systems,2005: 31-34.
  • 4Lai Jun, Ye Ming. Active contour based lung field segmentation [ C]. // Proceedings of IEEE Congress on Intelligent Human- Machine Systems and Cybernetics, 2009: 288-291.
  • 5耿俊卿,孙丰荣,刘泽,李艳玲,宫延新,姚桂华.基于自适应形变模型的胸部CT图像肺组织分割[J].系统仿真学报,2007,19(23):5419-5422. 被引量:4
  • 6Ingrid Sluimer, Mathias Prokop, Brain van Ginneken. Toward automated segmentation of the pathological lung in CT [ J]. IEEE Transaction of Medical Imaging, 2005, 24 ( 8 ) : 1025-1038.
  • 7秦晓红,孙丰荣,王长宇,李艳玲,王晓婧,陈力华.基于遗传算法的胸部CT图像肺组织分割[J].计算机工程,2007,33(19):188-189. 被引量:10
  • 8Qian Chang,Jun Shi, Xiao Zhiheng. A New 3D Segmentation algorithm based on 3D PCNN for lung CT slices [ C ]. // Proceedings of IEEE Congress on Biomedical Engineering and Informatics, 2009 : 1-5.
  • 9Huang Dengyuan, Wang Chiahung. Optimal multi-level thresholding using a two-stage Otsu optimization approach [ J ]. Pattern Recognition Letters, 2009, 30 (3) : 275-284.
  • 10Tao Yong, Jin Guofan, Wang Jiangang. Automatic feature extraction of head MR image based on limited region growing and improved boundary tracking method [ C ].// Proceedings of the SPIE On Optical Engineering , 2002: 571-578.

二级参考文献53

共引文献46

同被引文献24

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部