期刊文献+

一类具有Holling Ⅲ型功能性反应的捕食者-食饵系统的周期解的存在性 被引量:3

Existence of periodic solutions of predator-prey system with Holling Ⅲ functional response
下载PDF
导出
摘要 利用重合度理论中的延拓定理研究带有开发利用项的具有Holling Ⅲ型功能性反应的捕食者-食饵系统,得到了两个正周期解存在的充分条件,得到了一些新的结果. By using the coincidence degree theory, we investigate the existence of positive periodic solutions of predator-prey system with Holling III hmctional response and exploited terms. Some new criteria are established for the existence of periodic solutions.
出处 《纯粹数学与应用数学》 CSCD 2012年第4期523-530,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11101075) 教育部博士点新教师基金(20090043120009) 国家大学生创新性实验计划项目(091020024)
关键词 重合度 周期解 捕获项 HOLLING Ⅲ功能性反应 coincidence degree periodic solution exploited term Holling III functional response
  • 相关文献

参考文献4

二级参考文献24

  • 1Arditi, R., Ginzburg, L.R. Coupling in predator-prey dynamics: ratio-dependence. J. Ther. Biol., 139:311-326 (1989).
  • 2Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992).
  • 3Fan,M., Wang, Q., Zou,X. Dynamics of a non-autonomous ratio-dependent predator-prey system. Proceedings of the Royal Society of Edinburgh, 133A: 97-118 (2003).
  • 4Gaines, R.E., Mawhin, J.L. Coincidence degree and non-linear differential equations. Springer-Verlag,Berlin, 1977.
  • 5Ma, Z. Mathematical modeling and studying on species ecology. Education Press, Hefei, 1996 (in Chinese).
  • 6Zhang, Z,, Zeng, X. A periodic stage-structure Model. App. Math. Letters, 16:1053-1061 (2003).
  • 7Maynard Smith J. Models in ecology[M]. Cambridge Canbridge Univ Press, 1974
  • 8Holling C S. The functional response of predator to prey density and its role in minicry and population regulation[J]. Men Ent Soc Can, 1965;45:1-60
  • 9He X Z. Stability and delays in a predator-prey system[J]. J Math Anal appl, 1996;198:355-370
  • 10Li Y K. Periodic solutions of a periodic delay predator-prey system[J]. Proc of Amer Math Soc, 1999;127(5):1331-1335

共引文献63

同被引文献31

  • 1刘振杰,范鹰,于景伟.具有稀疏效应和HollingⅢ型捕食者——食饵系统的周期解[J].哈尔滨理工大学学报,2007,12(2):63-65. 被引量:3
  • 2Cantrell R S, Cosner C, Lou Yuan. Evolutionary stability of ideal free dispersal strategies in patchy environments[J]. Journal of Mathe- matical Biology,2012,65(5) :943-965.
  • 3Jansen V A A, Lloyd A L. Local stability analysis of spatially homogeneous solutions of multi-patch systems[J]. Journal Of Mathemati- cal Biology,2000,41(3) :232-252.
  • 4Chen Lijuan. Permanence for a delayed predator-prey model of prey dispersal in two-patch environments[J]. Journal of Applied Mathe- matics and Computing,2010,34(1/2):207-232.
  • 5Qiu Lin, Mitsui T. Predator-prey dynamics with delay when prey dispersing in n-patch environment[J]. Japan Journal of Industrial and Applied Mathematics, 2003,20 ( 1 ): 37-49.
  • 6Zhang Feng, Hui Cang, Han Xiaozhuo,et al. Evolution of cooperation in patchy habitat under patch decay and isolation[J]. Ecological Research, 2005,20 (4) : 461-469.
  • 7Chun Y S, Ryoo M I, Choi W I. Influences of resource patch distribution on a host-parasitoid system stability in patch environment: a la- boratory study[J]. Asia-Pacific Entomology, 1998,1 (2) : 223-234.
  • 8Zhang Xu, Wang Wendi. Importance of dispersal adaptations of two competitive populations between patehes[J]. Ecological Modelling, 2011,222(1) :11-20.
  • 9Wang Ruiping. Competition in a patch environment with cross-diffusion in a three-dimensional Lotka-Volterra system[J]. Nonlinear A- nalysis : Real World Applications, 2010,11 (4) : 2726-2730.
  • 10Zhang Long,Teng Zhidong, Liu Zijian. Survival analysis for a periodic predator-prey model with prey impulsively unilateral diffusion in two patches[J]. Applied Mathematical Modelling,2011,35(9) :4243-4256.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部