期刊文献+

应用反向学习策略的群搜索优化算法 被引量:25

Group Search Optimizer Applying Opposition-based Learning
下载PDF
导出
摘要 群搜索优化算法(Group Search Optimizer,GSO)是一类基于发现者-加入者(Producer-Scrounger,PS)模型的新型群体随机搜索算法。尽管该算法在解决众多问题中表现优越,但其依然面临着早熟和易陷入局部最优的问题,为此,提出了一种基于一般反向学习策略的群搜索优化算法(GOGSO)。该算法利用反向学习策略来产生反向种群,然后对当前种群和反向种群进行精英选择。通过对比实验表明,该方法效果良好。 Group search optimizer(GSO)is a new swarm intelligence algorithms based on the producer-scrounger model.GSO has been shown to yield good performance for solving various optimization problems.However,it tends to suffer from premature convergence and get stuck in local minima.This paper proposed an enhanced GSO algorithm called GOGSO,which employs generalized opposition-based learning to transform the current population into a new opposition population and uses an elite selection mechanism on the two populations.Experiments were conducted on a comprehensive set of benchmark functions.The results show that OGSO obtains promising performance.
出处 《计算机科学》 CSCD 北大核心 2012年第9期183-187,共5页 Computer Science
基金 国家自然科学基金(60975050 61070243 61165004) 高等学校博士学科点专项科研基金(20070486081) 中央高校基本科研业务费专项资金(6081014) 河北省科技支撑计划项目(11213587) 江西省自然科学基金(20114BAB201025) 江西省教育厅科技项目(GJJ12307)资助
关键词 群搜索优化算法 反向学习 数值优化 Group search optimizer Opposition-based learning Numerical optimization
  • 相关文献

参考文献15

  • 1He S,Wu Q H,Saunders J R. A Novel Group Search Optimiza tion Inspired By Animal Behavioral Ecology [C]//IEEE Con- gress on Evolutionary Computation. 2006:1272-1278.
  • 2Vickery W L, Giraldeau L A, Templeton J J, et al. Producers, scroungers,and group foraging[J]. American Naturalist, 1991, 137(6) : 847-863.
  • 3He S,Wu Q H, Saunders J R. Group Search Optimizer:An Opt mization Algorithm Inspired by Animal Searching Behavior[J]. IEEE Transactions on Ew)lutionary Computation, 2009,13 ( 5 ) 973-990.
  • 4Yao X, Liu Y, Liu G. Evolutionary programming made faster [J]. IEEE Transactions on Evolutionary Computation, 1999,3 (2):82-102.
  • 5Yao X,Liu Y. Fast evolution strategies[M]. Evolutionary Pro- gramming VI, Berlin, Germany: Springer-Verlag, 1997 : 151-161.
  • 6刘锋,覃广,李丽娟.快速群搜索优化算法及其应用研究[J].工程力学,2010,27(7):38-44. 被引量:16
  • 7Qin G,Liu F, Li L, et al. A Quick Group Search Optimizer andIts Application to the Optimal Design of Double Layer Grid Shells[C]//The 2nd International ISCM Symposium and The 12th International EPMESC Conference. 2009.
  • 8Hai Shen,Yunlong Zhu,Ben Niu,Q.H. Wu.An improved group search optimizer for mechanical design optimization problems[J].Progress in Natural Science:Materials International,2009,19(1):91-97. 被引量:12
  • 9Tizhoosh H. Opposition-based learning:A new scheme for ma- chine intelligence[C]//Proceedings of the International Confe- rence on Computational Intelligence for Modeling Control and Automation. 2005 : 695-701.
  • 10王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.

二级参考文献24

  • 1李丽娟,黄志斌,刘锋.启发式粒子群优化算法及其在空间结构优化中的应用[J].空间结构,2008,14(3):47-55. 被引量:8
  • 2Dorigo M, Di Caro G, Gambardella L. Ant algorithms for discrete optimization [J]. Artificial Life, 1999, 5(3): 137- 172.
  • 3Kenndy J, Eberhart R C. Particle swarm optimization [C] Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ, USA, 1995: 1942- 1948.
  • 4Barnard C J, Sibly R M. Producers and scroungers: A general model and its application to captive flocks of house sparrows [J]. Animal Behaviour, 1981, 29: 543-550.
  • 5He S, Wu Q H. A novel group search optimizer inspired by animal behaviour [C]. 2006 IEEE Congress on Evolutionary Computation, 2006: 4415-4421.
  • 6Kaveh A, Shojaee S. Optimal design of scissor-link foldable structures using ant colony optimization algorithm [J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22: 72- 80.
  • 7Li L J, Huang Z B, Liu F, Wu Q H. A heuristic particle swarm optimizer for optimization of pin connected structures [J]. Computers and Structures, 2007, 85(7-8): 340-349.
  • 8He S, Prempain, Wu Q H. An improved particle swarm optimizer for mechanical design optimization problems [J]. Engineering Optimization, 2004, 5(36): 585-605.
  • 9Perez R E, Behdinan K. Particle swarm approach for structural design optimization [J]. Computers and Structures, 2007, 85: 1579- 1588.
  • 10Liu Feng, Xu Xiaotong, Li Lijuan. The group search optimizer and its application on truss structure design [C] The 4th International Conference on Natural Computation. Jinan, 2008: 688-692.

共引文献29

同被引文献261

引证文献25

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部