期刊文献+

基于Fisher变换的植物叶片图像识别监督LLE算法 被引量:14

Recognition Method of Plant Leaves Based on Fisher Projection-supervised LLE Algorithm
下载PDF
导出
摘要 提出一种基于Fisher投影的监督LLE方法,应用于植物叶片图像识别中。该方法利用Fisher投影距离取代样本的测地距离,并以此为基础计算样本的权值,加入LLE算法的代价函数中。该方法克服了传统LLE算法无监督学习不适应分类问题的缺陷,在抑制噪声点影响的同时可以更好地挖掘样本的类别信息,提高叶片的分类精度。基于实拍植物叶片图像数据库的实验结果证明,该算法的平均识别率达到92.36%。 A new supervised weighted LLE method based on the Fisher projection was proposed. This method utilized the Fisher projection distance to replace the sample's geodesic distance, and the importance score of each sample was obtained based on this distance, then the importance scores were added into the cost function of LLE. This method can overcome the disadvantage of traditional LLE, an unsupervised learning algorithm which cannot solve the classification problem very well, and can exploit the category information better and reduce the influence of noise points at the same time. The experimental results based on the real-world plant leaf databases show its mean accuracy of recognition is up to 92.36%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2012年第9期179-183,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61172127) 高等学校博士学科点专项科研基金资助项目(20113401120006) 安徽大学211创新团队项目(KJTD007A) 安徽大学"211工程"青年科学研究基金资助项目(KJQN1114)
关键词 植物叶片 识别 特征提取 监督局部线性嵌入 流形学习 FISHER变换 Plant leaves, Recognition, Feature extraction, Supervised locally linear embedding, Manifold learning, Fisher projection
  • 相关文献

参考文献16

  • 1Du Jixiang, Huang D S, Wang Xiaofeng, et al. Shape recognition based on radial basis probabilistic neural network and application to plant species identification [ M ]. Wang J, Liao X F, Yi Z. Lecture Notes in Computer Science, Springer- Verlag, 2005, 3497:281 - 285.
  • 2Gu Xiao, Du Jixiang. Leaf recognition based on the skeleton segmentation [ M ]. Huang D S, Zhang X P, Huang G B. Lecture Notes in Computer Science, Springer-Verlag, 2005, 3644: 253- 262.
  • 3Li Y F, Zhu Q S, Cao Y K, et al, A leaf vein extraction method based on snakes technique [ C ] //Proceedings of IEEE International Conference on Neural Netwo and Brain, 2005:885 -888.
  • 4Camargo Neto J, Meyer G E, Jones D D, et al. Plant species identification using Elliptic Fourier leaf shape analysis [ J]. Computers and Electronics in Agriculture, 2006, 50(2) : 121 - 134.
  • 5Bruno O M, Plotze R O, Falvo M, et al. Fractal dimension applied to plant identification [ J]. Inform. Sci. , 2008, 178(12) :2 722 -2 733.
  • 6王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 7张善文,黄德双.一种鲁棒的监督流形学习算法及其在植物叶片分类中的应用[J].模式识别与人工智能,2010,23(6):836-841. 被引量:18
  • 8张善文,王献峰.基于加权局部线性嵌入的植物叶片图像识别方法[J].农业工程学报,2011,27(12):141-145. 被引量:20
  • 9Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science, 2000, 290 (5500) : 2323 -2326.
  • 10Chang H, Yeung D Y. Locally linear metric adaptation with application to semi-supervised clustering and image retrieval [J]. Pattern Recognition, 2006, 39(7) : 1 253 - 1 264.

二级参考文献55

共引文献150

同被引文献175

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部