摘要
Simultaneous multisite recording using multi-electrode arrays(MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past 40 years,great efforts have been made by both scientists and commercial concerns,to advance this technique.The MEA technique has been widely applied to many regions of the brain,retina,heart and smooth muscle in various studies at the network level.The present review starts from the development of MEA techniques and their uses in brain preparations,and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains.Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays,its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.
Simultaneous multisite recording using multi-electrode arrays(MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past 40 years,great efforts have been made by both scientists and commercial concerns,to advance this technique.The MEA technique has been widely applied to many regions of the brain,retina,heart and smooth muscle in various studies at the network level.The present review starts from the development of MEA techniques and their uses in brain preparations,and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains.Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays,its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.
基金
supported by grants from the National Natural Science Foundation of China(30770668,81070899,81171049)
973 program (2011CB504100) to J.C