期刊文献+

基于Fepg系统HTS块材磁悬浮数值计算

Numerical solution of HTS bulk magnetic levitation under Fepg system
下载PDF
导出
摘要 文中基于高温超导体临界态模型和E-J本构关系幂指数模型,借助于虚拟电导率和Maxwell微分方程组,推导出了直接求解无限长永磁轨道上方超导块材内部磁场强度H变量的二维偏微分弱解积分形式。在有限元自动生成平台Fepg系统上,结合有限元描述语言,成功地生成了二维超导块材内部电磁数值计算有限元FOR-TRAN求解代码。采用生成的有限元计算代码模拟计算出了一磁悬浮原型系统中的超导块材悬浮力-位移曲线。数值结果显示了超导块材在永磁轨道上方竖直方向移动过程中其内部磁场分布特性。 In the paper, a numerical 2 - D simulation model for high - To superconductor magnetic levitation system was successfully developed using H - formulation. The 2 - D governing equations were derived from the famous critical model combi- ning with superconducting E -J constructive power exponent law. Mathematically, the virtual conductivity and Maxwell partial differential equations were involved. The finite element auto - generation platform FEPG was used and the finite element solution FORTRAN codes are successfully generated based on the partial differential weak integral formulations of the 2 - D governing equations. The magnetic levitation force vs gap curves of one prototype of a HTS Maglev system composed of infinite long high - Tc superconductor and permanent magnetic railway were successfully simulated using the proposed numerical method. The calculation results show that the magnetic fields begin to penetrate into the HTS pack interior from its surface while the sample firstly moves vertically down to the surface of the permanent railway from a high position with zero -field cooling condition.
机构地区 洛阳理工学院
出处 《低温与超导》 CAS CSCD 北大核心 2012年第9期21-26,共6页 Cryogenics and Superconductivity
基金 洛阳理工学院博士启动基金(2009BZ16)
关键词 永磁轨道 超导块材 Fepg 磁悬浮 有限元数值计算 Permanent magnet guideway, HTS bulk, Maglev, Fepg, Finite element numerical solution
  • 相关文献

参考文献12

  • 1Hull J R. Superconducting bearings [ J ]. Supercond. Sci. Technol. , 2000,13:1 15.
  • 2Wang J S,Wang S Y, Zeng Y W, et al. The first man loading high temperature superconducting Maglev test vehicle in the world [ J ]. Physica C, 2002,378 381 : 809 814.
  • 3Bean C. Magnetization of high -field superconductors [J]. Rev. Mod. Phys., 1964,36(1):31-39.
  • 4Brandt F H. Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs [ J ]. Phys. Rev. B., 1996,54(6)4246-4264.
  • 5Anderson P W, Kim Y B. Hard superconductivity: theory of the motion of abrikosov flux lines [ J ]. Rev. Mod. Phys., 1964,36:39-45.
  • 6Paasi J, Lahtinen M. AC losses in high temperature superconductors: revisting the fundamentals of the loss modelinz[ J]. Phvsica C.. 1998.310:57 61.
  • 7Yoshida Y, Uesaka M, Miya K. Magnetic field and force analysis of high Tc superconductor with flux flow and creep[J]. IEEE Trans. Magn. , 1994,30(5) :3503 3506.
  • 8Barnes G. McCulloeh M and DewHuges D, Computer modelling of type II superconductors in applications, Supercond[ J]. Sci. Technol. 1999,12:518 522.
  • 9Amemiya N, Murasawa S, Banno N, et al. Numerical modelings of superconducting wires for AC loss calculations[J]. Physica C. , 1998,310:16 -29.
  • 10Yiyun Lu, Shujun Zhang, 2012, J low Temp phys. DOI 10. 1007/s10909 012 0637 0.

二级参考文献4

  • 1Ma K B,Chen Q Y,Postrekhin E,et al.High temperature superconductor levitation bearing for space application[J].Physica C,2000,341-348:2 517-2 520.
  • 2Coombs T A,Campbell A M,Storey R,et al.Superconducting magnetic bearings for energy storage flywheels[J].IEEE Trans.APPl.Supercond.,1999,9(2):968-971.
  • 3Wang Jiasu,Wang Suyu,et al.The first man-loading high temperature superconducting maglev test vehicle in the world[J].Physica C,2002,378-381:809-814.
  • 4Lu Yiyun,Wang Jiasu,Wang Suyu,et al.3D-modeling numerical solutions of electromagnetic behavior of HTSC bulk above permanent magnetic guideway[J].J.Supercond.Nov.Magn.,2008,21:467-472.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部