期刊文献+

钢铝混合汽车前纵梁的耐撞性优化方法比较 被引量:9

Comparison of Crashworthiness Optimization Methods of Steel-Aluminum Hybrid Automotive Front Rail
下载PDF
导出
摘要 为了解决汽车前纵梁碰撞时峰值碰撞力和吸能量之间的矛盾,通过对前纵梁前端使用铝合金、后端使用高强度钢板,提出了一种钢铝混合前纵梁结构.以纵梁两端所用材料类型及厚度为组合变量,建立了该结构轻量化和耐撞性多目标优化问题的数学模型,并对多项式、Kriging和径向基函数(RBF)3种常用近似模型解决该特定问题的适用性进行了研究.结果表明,RBF更适合作为近似模型解决材料类型和板厚的组合优化问题,且优化后的前纵梁结构能在改善耐撞性的同时,显著提高轻量化水平. In order to solve the conflict between the peak collision force and the total absorbed energy of vehicle' s front rail during collision, a new type of steel-aluminum hybrid structure is presented, in which aluminum alloy and advanced high-strength steel (AHSS) are respectively used for the front and the back parts. Then, by taking the material type and the sheet thickness as the variables, a mathematical model for the multi-objective optimization in terms of lightweight and crashworthiness is established, and the feasibility and applicability of such three approximate methods as the polynomial, the Kriging and the radial basis function (RBF) in solving the combinational optimization problem are investigated. The results show that RBF is more suitable for the combinational optimization concerning material type and sheet thickness, and that the use of steel-aluminum hybrid materials remarkably improves the crashworthiness and lightweight of front rails.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期90-94,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家科技支撑计划项目(2011BAG03B02) 华南理工大学中央高校基本科研业务费专项资金资助项目(2009ZZ0002)
关键词 汽车前纵梁 钢铝混合梁 耐撞性 近似模型 多目标优化 automotive front rail steel-aluminum hybrid rail crashworthiness approximate model multi-objec- tive optimization
  • 相关文献

参考文献12

  • 1Zhang C, Saiga! A. Crash behavior of a 3D S-shape space frame structure [ J ]. Journal of Materials Processing Tech-nology, 2007,191 : 256- 259.
  • 2施颐,朱平,张宇,潘锋.基于刚度与耐撞性要求的车身结构轻量化研究[J].汽车工程,2010,32(9):757-762. 被引量:17
  • 3Cui Xin-tao, Wang Shu-xin, Hu S Jack. A method for opti- mal design of automotive body assembly using multi-mate- rial construction [ J ]. Materials and Design, 2008,29 : 381-387.
  • 4胡朝辉,成艾国,陈少伟,钟志华.多材料—多零件规格组合结构多目标优化的应用[J].机械工程学报,2010,46(22):111-116. 被引量:16
  • 5Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modeling criteria [ J ]. Struct Muhidisc Optim, 2001,23 : 1-13.
  • 6Gutmann H M. A radial basis function method for global optimization [ J ]. Journal of Global Optimization, 2001, 19,201 -227.
  • 7彭磊,刘莉,龙腾.基于动态径向基函数代理模型的优化策略[J].机械工程学报,2011,47(7):164-170. 被引量:60
  • 8Fang H,Rais Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthi- hess optimization [ J ]. Computers and Structures, 2005, 83:2121-2136.
  • 9Wang G Gary, Shan S. Review of metamodeling techniques in support of engineering design optimization [ J ]. Journal of Mechanical Design,2007,129:370-380.
  • 10Acar E, Guler M A, Gerceker B, et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations [ J 1. Thin-Walled Struc- tures,2011,49:94-105.

二级参考文献48

  • 1韩旭,朱平,余海东,郭永进,林忠钦,高新华,顾镭,杨晋,徐有忠.基于刚度和模态性能的轿车车身轻量化研究[J].汽车工程,2007,29(7):545-549. 被引量:58
  • 2Clarke S M,Griebsch J H,Simpson T W.Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses[J].Trans.ASME,J.Mech.Des.,2005,127(4):1077-1087.
  • 3Fang K T,Lin D K,Winker P,et al.Uniform Design:Theory and Application[J].Techno-metrics,2000,39(3):237-248.
  • 4Shan S Q,Wang G G.Reliable Design Space and Complete Singh-loop Reliability-based Design Optimization[J].Reliability Engineering and System Safety,2008,93(8):1218-1230.
  • 5Benedyk J.Light Metals in Automotive Applications[J].Light Metal Age,2000,58(10):34-35.
  • 6Zhu P,Zhang Y,Chen G L.Metamodel-based Lightweight Design of an Automotive Front-body Structure Using Robust Optimization[J].Proc.IMechE,Part D:J.Automobile Engineering,2009,223:1-14.
  • 7Kodiyalam S,Yang R J,Gu L,et al.Multidisciplinary Design Optimization of a Vehicle System in a Scalable,Hish Performance Computing Environment[J].Structural and Muhidisciplinary Optimization,2004,26(3/4):256-263.
  • 8CARLE D, BLOUNT G. The suitability of aluminium as an altemative material for car bodies[J]. Materials and Design, 1999, 20: 267-72.
  • 9HAHN O, KURZOK JR, TIMMERMANN R. Joining of multi-material constructions[C]//Proceedings of Chinese- German Ultralight Symposium, Beijing, China, 2001: 151-162.
  • 10LI Yuxuan, LIN Zhongqin, JIANG Aiqin, et al. Use of high strength steer for lightweight and crashworthy car body[J]. Materials and Design, 2003, 24: 177-182.

共引文献138

同被引文献58

  • 1成焕波,刘志峰,袁合.基于拓扑优化的混凝土输送臂基座轻量化设计方法研究[J].机械科学与技术,2015,34(1):23-26. 被引量:1
  • 2Song S I,Park G J.Multidisciplinary optimization of an automotive door with a tailored blank[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2006,220(2):151-163.
  • 3Xu F X,Sun G Y,Li G Y,et al.Crashworthiness design of multi-component tailor-welded blank(TWB)structures[J].Structural and Multidisciplinary Optimization,2013,48:653-667.
  • 4Sun G Y,Fang J G,Tian X Y,et al.Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design[J].Expert Systems with Applications,2015,42(9):4482-4492.
  • 5Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 6HESSE S H,LUKASZEWICZ D H J A,DUDDECK F. Amethod to reduce design complexity of automotive compos-ite structures with respect to crashworthiness [ J ]. AutoTechonology,2014,7(12) :50 -53.
  • 7HAITHAM A T,WANg Y C. Simplified FE vehicle modelfor assessing the vulnerability of axially compressed steelcolumns against vehicle frontal impact[J]. Applied Me-chanics Division,2014,237:135 - 144.
  • 8BROWN S P D. Steenh of P. Electric vehicle : the role andimportance of standards in an emerging market[ J]. Ener-gy Policy,2010,38:3797 -3806.
  • 9YI S I,LEE J Y, PARK G J. Crashworthiness design op-timization using equivalent static loads [ J ]. Journal of Au-tomobile Engineering,2012,226( 1) :23 -38.
  • 10MANUEL M V,JOHAN DA,KARIN B. Construction andevaluation of thoracic injury risk curves for a finite ele-ment human body model in frontal car crashes [ C]// Pro-ceedings of the ASME Design Engineering Technical Con-ference. USA; [ s. n. ] ,2014:459 -472.

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部