期刊文献+

基于类别相关近邻子空间的最大似然稀疏表示鲁棒图像识别算法 被引量:12

Robust Image Recognition Algorithm of Maximum Likelihood Estimation Sparse Representation Based on Class-related Neighbors Subspace
下载PDF
导出
摘要 为了构建一个快速鲁棒的图像识别算法,提出基于类别相关近邻子空间的最大似然稀疏表示图像识别算法.考虑到每个测试样本的不同分布特性及训练样本选择的类别代表性原则,不再将所有训练样本作为稀疏表示的字典,而是基于距离相近准则选择合适子空间,从每个类别中选取自适应数量的局部近邻构成新的字典,在减少训练样本的同时保留了稀疏表示原有的子空间结构.然后基于最大似然稀疏表示识别方法,将稀疏表示的保真度表示为余项的最大似然函数,并将识别问题转化为加权的稀疏优化问题.在公用人脸与数字识别数据库上的实验证明该算法的合理性,提高识别速度的同时保证了识别精度和算法的鲁棒性,特别是对于遮挡与干扰图像具有较好的适应性. In order to construct a fast and robust image recognition algorithm, an image recognition algorithm of max- imum likelihood estimation sparse representation based on class-related neighbors subspace is proposed in this paper. Considering the different distribution characteristics of each test sample and the class-representative principle of training samples~ selection, instead of constructing the dictionary of sparse representation by all training samples, suitable sub- space is selected and local neighbors of adaptive number that is selected from each class are used to construct the new dictionary based on distance proximity criterion. The training samples are reduced and the original subspace structure of sparse representation is kept at the same time. Then based on the recognition method of maximum likelihood sparse representation, the fidelity of sparse representation is represented by the maximum likelihood function of residuals and the recognition problem is converted to a weighted sparse optimization problem. Experiments results on public available face and handwritten digital databases verify the rationality, recognition speed, and recognition accuracy of the proposed algorithm. The algorithm is robust, especially it can work for in disturbed and occluded images.
出处 《自动化学报》 EI CSCD 北大核心 2012年第9期1420-1427,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297) 中国博士后自然科学基金(20080440124) 第二批中国博士后基金(200902356)资助~~
关键词 图像识别 稀疏表示 类别相关子空间 近邻选择 最大似然估计 Image recognition, sparse representation, class-related subspace, neighbors' selection, maximum likelihood estimation
  • 相关文献

参考文献11

  • 1Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 2Huang J Z, Huang X L, Metaxas D. Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage, United States: IEEE, 2008. 1-8.
  • 3Wagner A, Wright J, Ganesh A, Zhou Z H, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Image Recognition Workshops. Miami, United States: IEEE, 2009. 597-604.
  • 4Wright J, Ma Y. Dense error correction via l1 minimization. IEEE Transactions on Information Theory, 2010, 56(7): 3540-3560.
  • 5Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Image Recognition. Springs, United States: IEEE, 2011. 625-632.
  • 6He R, Hu B G, Zheng W S, Guo Y Q. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference. Atlanta, United States: AAAI, 2010. 475-480.
  • 7Huang J B, Yang M H. Fast sparse representation with prototypes. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Image Recognition. San Francisco, United States: IEEE, 2010. 3618-3625.
  • 8Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proceedings of the 2010 International Conference on Pattern Recognition. Istanbul, Turkey: ICPR, 2010. 649-652.
  • 9Zhang N, Yang J. K nearest neighbor based local sparse representation classifier. In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 2010. 400-404.
  • 10Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 2011, 73(3): 273-282.

同被引文献142

  • 1朱启兵,杨宝,黄敏.基于核映射稀疏表示分类的轴承故障诊断[J].振动与冲击,2013,32(11):30-34. 被引量:9
  • 2王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180. 被引量:43
  • 3薛明东,郭立,张国宣,刘士建.一种新的图像识别算法[J].计算机工程,2005,31(9):173-175. 被引量:4
  • 4陈燕东,刘景琳,孟志强.新型实时光电混合图像识别系统设计[J].电子测量与仪器学报,2007,21(3):103-107. 被引量:3
  • 5彭玉华.小波变换与工程应用[M].北京:科学出版社,2006.
  • 6Wright J, Yang A Y, Ganesh A, Sastry S S. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 7Engan K, Aase S O, Hakon H J. Method of optimal directions for frame design. In: Proceedings of Acoustics, Speech, and Signal Processing. Arizona, USA: IEEE, 1999, 5: 2443-2446.
  • 8Aharon M, Elad M, Bruckstein M A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 9Yang M, Zhang L, Feng X. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of 2011 IEEE International Conference on Computer Vision(ICCV). Barcelona, Spain: IEEE, 2011. 543-550.
  • 10He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003. 152-160.

引证文献12

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部