摘要
为了构建一个快速鲁棒的图像识别算法,提出基于类别相关近邻子空间的最大似然稀疏表示图像识别算法.考虑到每个测试样本的不同分布特性及训练样本选择的类别代表性原则,不再将所有训练样本作为稀疏表示的字典,而是基于距离相近准则选择合适子空间,从每个类别中选取自适应数量的局部近邻构成新的字典,在减少训练样本的同时保留了稀疏表示原有的子空间结构.然后基于最大似然稀疏表示识别方法,将稀疏表示的保真度表示为余项的最大似然函数,并将识别问题转化为加权的稀疏优化问题.在公用人脸与数字识别数据库上的实验证明该算法的合理性,提高识别速度的同时保证了识别精度和算法的鲁棒性,特别是对于遮挡与干扰图像具有较好的适应性.
In order to construct a fast and robust image recognition algorithm, an image recognition algorithm of max- imum likelihood estimation sparse representation based on class-related neighbors subspace is proposed in this paper. Considering the different distribution characteristics of each test sample and the class-representative principle of training samples~ selection, instead of constructing the dictionary of sparse representation by all training samples, suitable sub- space is selected and local neighbors of adaptive number that is selected from each class are used to construct the new dictionary based on distance proximity criterion. The training samples are reduced and the original subspace structure of sparse representation is kept at the same time. Then based on the recognition method of maximum likelihood sparse representation, the fidelity of sparse representation is represented by the maximum likelihood function of residuals and the recognition problem is converted to a weighted sparse optimization problem. Experiments results on public available face and handwritten digital databases verify the rationality, recognition speed, and recognition accuracy of the proposed algorithm. The algorithm is robust, especially it can work for in disturbed and occluded images.
出处
《自动化学报》
EI
CSCD
北大核心
2012年第9期1420-1427,共8页
Acta Automatica Sinica
基金
国家自然科学基金(61071199)
河北省自然科学基金(F2010001297)
中国博士后自然科学基金(20080440124)
第二批中国博士后基金(200902356)资助~~
关键词
图像识别
稀疏表示
类别相关子空间
近邻选择
最大似然估计
Image recognition, sparse representation, class-related subspace, neighbors' selection, maximum likelihood estimation