期刊文献+

基于信息增益的特征选择在烟丝致香成分中的应用 被引量:1

Application of information gain based feature selection in aroma components of shredded tobacco
下载PDF
导出
摘要 烟丝化学成分可以由实验方法提取出来,但其关键致香成分很难确定。针对这一问题,一般采用化学分析方法,但分析耗时比较长。根据烟丝化学成分与香气风格关系,使用基于信息增益的特征选择方法进行提取致香成分。通过计算烟丝化学成分中的每个属性的信息增益,从中挑选出信息增益大于0的值作为特征选择的结果进行分类预测。实验结果表明,使用该方法能够得到较准确的关键致香成分,与传统特征选择方法相比,其特征数据集的分类结果也更加准确,可以作为烟叶香型分类的有效工具。 Chemical composition of shredded tobacco can be extracted by experimental method, but its key aroma compo- nents are difficult to determine. In view of this problem, the chemical analysis method is often adopted, but it is time-consu- ming. A feature selection method based on information gain is adopted to extract the aroma components according to the rela- tionship between chemical composition and aroma style. The information gain greater than zero as the result of feature selec- tion is picked out to conduct classification prediction by calculating the information gain of each attribute in chemical compositions. The experimental results show that the method can get more accurate key aroma components, and classification result of its feature set is more accurate than that by traditional feature selection methods. It can be used as an effective tool of tobac- co aroma classification.
出处 《现代电子技术》 2012年第18期92-94,共3页 Modern Electronics Technique
关键词 信息增益 特征选择 致香成分 烟叶香型 information gain feature selection aroma component tobacco aroma
  • 相关文献

参考文献10

  • 1肖协忠,王放,贺英,刘红伟,马强,徐海涛.烤烟致香成分与香气质量的相关性分析[J].中国烟草科学,2008,29(6):1-6. 被引量:44
  • 2国家技术监督局.GB5606.4-2005卷烟感官技术要求[S].北京:中国标准出版社,2005.
  • 3边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2002.
  • 4KIRA K, RENDELL L. A practical approach to feature se- lection [C]//Proceedings of the Ninth International Confer- ence on Machine Learning. [S. 1.]: ICML, 1992: 249-256.
  • 5HALL M A. Correlation-based feature subset selection for machine learning[D]. Hamilton, NewZealand: University of Waikato, 1999.
  • 6GUYON I, WESTON J, BARNHILL S, et al. Gene selec- tion for cancer classification using support veetor machines [J]. Machine Learning, 2002, 46(1-3) : 389-422.
  • 7ABE N, KUDO M. Non-parametric classifier-independent feature selection [J]. Pattern Recognition, 2006, 39: 737-746.
  • 8郑伟,吕建新,马艳丽.一种基于扩展互信息算法的特征选择方法[J].微计算机信息,2010,26(24):223-224. 被引量:2
  • 9朱颢东,钟勇.基于改进的ID3信息增益的特征选择方法[J].计算机工程,2010,36(8):37-39. 被引量:8
  • 10GUYON I, ELISSEEFF A. An introduction to variable and feature selection [J]. Machine Learning Research, 2003 (3) .. 1157-1182.

二级参考文献24

共引文献55

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部