期刊文献+

基于PSO优化RBF神经网络的反应釜故障诊断 被引量:10

Application of PSO -based RBF Neural Network in Fault Diagnosis of CSTR
下载PDF
导出
摘要 针对单一径向基函数(RBF)神经网络在反应釜故障诊断中泛化能力不足的缺点,设计了基于粒子群(PSO)算法优化的RBF神经网络。利用PSO算法操作简单、容易实现等特点及其智能背景,对RBF神经网络的参数、连接权重进行优化,并用经PSO算法优化的RBF神经网络对反应釜故障进行仿真诊断。仿真诊断结果表明,PSO算法优化的RBF神经网络具有较好的分类效果,较RBF诊断模型精度高、收敛快,具有推广应用价值。 A new PSO algorithm with dynamically changing inertia weight and study factors based on improved adaptive PSO was proposed,where the inertia weight of the particle was adjusted adaptively based on fitness of the particle.The diversity of inertia weight made a compromise between the global convergence and local convergence speed,so it can alleviate the problem of premature convergence effectively.The algorithm was applied to train RBF neural network and a model of fault diagnosis for CSTR was established,compared with PSO algorithm,the proposed algorithm can improve the training efficiency of neural network effectively and obtain good diagnosis results.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第18期2204-2207,共4页 China Mechanical Engineering
基金 浙江省自然科学基金资助项目(Y1110686)
关键词 RBF神经网络 粒子群优化算法 故障诊断 连续搅拌反应釜 RBF neural networks particle swarm optimization(PSO) fault diagnosis continuous stirred tank reactor(CSTR)
  • 相关文献

参考文献5

  • 1Park J, Sandberg I W. Universal Approximation Using Radial-- basis-- function Networks[J]. Neu- ral Computation, 1991,3 (2) : 246-257.
  • 2Foster I,Kesselman C, Nick J, et al. Grid Service for Distributed System Integration[J]. IEEE Comput- er,2002,35(6) :37-46.
  • 3刘安,刘春生.基于RBF神经网络的非线性系统故障诊断[J].计算机仿真,2007,24(2):141-144. 被引量:19
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimiza- tion[C]//Proceedings of IEEE International Con- ference on Neural Networks. Piscataway. 1995: 1942-1948.
  • 5Eherhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc. 6th Int. Sym posium on Micro Machine and Human Science. Nagoya,Japan, 1995:39-43.

二级参考文献7

  • 1Alexander B Trunov and Marios M Polycarpou. Robust fault diagnosis of state and sensor faults in nonlinear muhivariable systems[J]. IEEE Proceedings of the American Control Conference. 1999:608 - 612.
  • 2Alexander B Trunov and Marios M Polycarpou. Robust nonlinear fault diagnosis: application to robotic systems[J]. IEEE International Conference on Control Application. 1999:1424 -1429.
  • 3H Wang, S Daley. Actuator fault diagnosis: an adaptive observer - based technique[J]. IEEE Transaction on automatic control, 1996,41 (7) : 1073 - 1078.
  • 4H Wang, Z Huang, S J Daley. On the use of adaptive updating rules for actuator and sensor fault dlagnosis[J]. Automatica,1997,33(2) : 2172225.
  • 5J Chen, J Patton, H Y Zhang. Design of unknown input robust detection filters[J]. Int J of Control, 1996,63( 1 ) : 852105.
  • 6马立玲,杨英华,王福利.执行器故障检测的神经网络观测器方法[J].东北大学学报(自然科学版),2002,23(12):1123-1126. 被引量:3
  • 7贾明兴,陆宁云,王福利.基于RBF神经网络的非线性系统故障诊断[J].中南工业大学学报,2003,34(4):455-458. 被引量:3

共引文献18

同被引文献98

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部