期刊文献+

含有极大值的二阶差分方程的有界振动性和非振动性 被引量:2

The Bounded Oscillation and Nonoscillation of the Second-order Difference Equation with Maxima
下载PDF
导出
摘要 研究了带有极大值的二阶差分方程,讨论了有界解的振动性和非振动性,在已有的含有极大值的一阶差分方程有关文献的基础上对一些结论进行了扩展,主要运用了不等式的放缩法得出了含有极大值的二阶差分方程的振动性和非振动性. The oscillation and nonoscillation of the second-order difference equation with maxima were studied. Based on previous literature of the oscillation of the first-order difference equation with maxima, some results were extended. Through the method of shrinkage second-order difference equation with maxima were obtained. , the oscillation and nonoscillation of the
机构地区 燕山大学理学院
出处 《郑州大学学报(理学版)》 CAS 北大核心 2012年第2期39-42,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 河北省教育厅科学研究基金资助项目 编号Z2007431
关键词 极大值 差分方程 振动 非振动 maxima difference equation oscillation nonoscillation
  • 相关文献

参考文献6

二级参考文献22

  • 1杨逢建,雷友发.具有可变时滞的非线性非自治差分方程的振动性及其应用[J].系统科学与数学,2004,24(3):346-353. 被引量:8
  • 2李巧銮,刘召爽,白景山.一阶中立型差分方程的振动性[J].河北师范大学学报(自然科学版),2004,28(6):569-570. 被引量:5
  • 3张玉珠,燕居让.具有连续变量的差分方程振动性的判据[J].数学学报(中文版),1995,38(3):406-411. 被引量:75
  • 4申建华.具连续变量差分方程振动性的比较定理及应用[J].科学通报,1996,41(16):1441-1444. 被引量:49
  • 5[1]Bainov D, Petrov V, Proytcheva V. Oscillatory and Asymptotic Behavior of Second Order Neutral Differential Equations with "Maxima". Dynamic Systems and Applications, 1995, 4:137-146
  • 6[2]Bainov D, Petrov V, Proytcheva V. Existence and Asymptotic Behavior of Nonoscillatory Solutions of Second Order Neutreal Differential Equations with "Maxima". Journal of Computational and Applied Mathematics, 1997, 83:237-249
  • 7[3]Bainov D, Petrov V, Proytcheva V. Oscillation and Nonoscillation of First Order Neutral Differential Equations with "Maxima". SUT Journal of Mathematics, 1995, 31:17-28
  • 8[4]Petrov V. Nonoscillatory Solutions of Neutral Differential Equations with "Maxima". Communications in Applied Analysis, 1998, 2:129-142
  • 9BAINOV D,PETROV V,PROYTCHEVA V. Existence and asymptotic behavior of nonoscillatory solutions of second order neutral differential equations with " maxtma " [J]. Journal of Computational and Applied Mathematics, 1997,83:237-249.
  • 10PETROV V. Nonoscillatory solutions of neutral differential equations with "maxima"[J]. Communications in Applied Analysis, 1998,2 : 129-142.

共引文献57

同被引文献35

  • 1范彩霞,赵爱民,邓嵩.带有极大值项的中立型差分方程的振动性[J].山西大学学报(自然科学版),2005,28(1):5-7. 被引量:10
  • 2Goldberg S. An Introduction to Difference Equations[M].{H}New York:John Wiley & Sons,1960.1-270.
  • 3Agarwal R P. Difference Equations and Inequalities:Theory,Methods,and Applications[M].New York:Marcel Dekker,2000.1-1000.
  • 4Cabada A,Iannizzotto A,Tersian S. Multiple solutions for discrete boundary value problems[J].{H}Journal of Mathematical Analysis and Applications,2009,(02):418-428.
  • 5Zhang Binggen,Kong Lingju,Sun Yijun. Existence of positive solutions for BVPs of fourth-order difference equations[J].{H}Applied Mathematics and Computation,2002,(2/3):583-591.doi:10.1016/S0096-3003(01)00171-0.
  • 6Ma Ruyun,Xu Youji. Existence of positive solution for nonlinear fourth-order difference equations[J].{H}Computers & Mathematics with Applications,2010,(12):3770-3777.
  • 7Yuan Chengjun. Positive solutions of a singular positone and semipositone boundary value problems for fourth-order difference equations[J].{H}Discrete Dynamics in Nature and Society,2010.1-16.
  • 8Agarwal R P,Chow Y M. Iterative methods for a fourth order boundary value problem[J].{H}Computational and Applied Mathematics,1984,(02):203-217.
  • 9Korman P. Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems[J].Proceedings of the Royal Society of Edinburgh A,2004,(01):179-190.
  • 10Webb J R L,Infante G,Franco D. Positive solutions of nonlinear fourth-order boundary-value problems with local and nonlocal boundary conditions[J].Proceedings of the Royal Society of Edinburgh A,2008,(02):427-446.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部