期刊文献+

一阶时滞过程PID控制器优化准则 被引量:10

Criteria for Optimization of PID Controllers for First Order Plus Delay-time Processes
原文传递
导出
摘要 对单回路控制系统,期望得到控制器的统一优化准则。以误差积分性能指标描述系统时间响应,以环路函数的频域约束表示系统稳定裕度,从而建立一种综合的鲁棒性能(RP)指标,即系统的稳定裕度和积分性能的指数加权指标。针对比例积分微分(PID)控制器串联一阶时滞过程(FOPDT)的系统,通过计算机数值运算,选择出RP的合理加权因子范围为1~2。以加权因子取1.5的RP作为控制器优化准则,对时滞比从0到∞的FOPDT过程获得了最优PID控制。仿真表明,该法对鲁棒性和积分性能的折中是合适的,对一般工业过程的控制器参数优化有较大的借鉴意义。 Of single-loop control system, we expect the unified controller optimization criterion. With the integral performance index of error function to describe the behavior of system time-domain response, and the frequency domain constraints of loop function to indicate the system stablity margin, we established a comprehensive robust performance(RP) index, which is the exponential weighted index of stability margin and integral performance of the system. For the case of proportional integral derivative (PID) controller series the first- order plus delay time(FOPDT) process in system, through computer numerical computing, the range of RP weighted factor is reasona- bly determined from 1 to 2. With the weighted factor of 1.5 in the RP as the controller optimization criterion, the optimal PID control for FOPDT processes with the time ratio, of delay time to lag time, from 0 to infinity, were achieved. Simulation examples show that the compromise between robustness and dynamic performance of closed-loop system is appropriate and satisfactory. So, this proposed criterion can be as the best general guidelines for optimal control for common industrial processes.
出处 《控制工程》 CSCD 北大核心 2012年第5期798-800,808,共4页 Control Engineering of China
基金 人工智能四川省重点实验室科研基金(2009RY004) 四川理工学院科研基金(2010XJKYL011)
关键词 一阶时滞过程 比例积分微分控制器 鲁棒积分性能 优化准则 FOPDT PID controller robust performance index optimal criterion
  • 相关文献

参考文献17

  • 1Ender, D B. Process control performance : Not at good as you think [J]. Control Engineering,1993,13(2) : 180-190.
  • 2Aidan 0,Dwyer. PI and PID controller tuning rules,3rd Edition [M].London : Imperial College Press,2009.
  • 3Shinskey F G. Process control systems:Application,design,and tuning [ M]. 4 edition. New York:McGraw-Hill Inc,1996.
  • 4Murrill P W. Automatic control of processes [ M]. Pennsylvania:International Textbook Co ,1967.
  • 5Wang F S,Juang W S,Chan C T. Optimal tuning of PID controllers for singleand cascade control loops[ J]. Chemical Engineering Communications, 1995,132(2) :15-34.
  • 6Zhuang M. Computer-aided PID controller design[ D]. England: U-niversity of Sussex, 1992.
  • 7Ahmad Ali,Somanath Majhi. Integral criteria for optimal tuning of PI/PID controllers for integrating processes [ J]. Asian Journal of Control,2011,13(2) :328-337.
  • 8AstrOm K J,Hdgglund T. Revisiting the Ziegler-Nichols step response method for PID control [ J].Journal of Process Control,2004, 14(6):635-650.
  • 9Skogestad S. Simple analytic rules for model reduction and PID controller tuning [ J]. Journal of Process Control,2003,13 (4) :291-309.
  • 10Huang H P,Chen C C. Control-system synthesis for open-loop unstable process with time delay [ J].. IEE Proc Control Theory & Appl . 1997,144(4):334-346.

同被引文献71

  • 1周抑涛,刘开培.内模控制在串级系统中的应用[J].福建电力与电工,2005,25(1):11-13. 被引量:5
  • 2王福永.基于Pade逼近的纯滞后系统内模控制器的设计[J].苏州大学学报(工科版),2004,24(4):26-29. 被引量:8
  • 3张福波,王国栋,张殿华,刘相华.PID控制器参数的ITAE最佳设定公式[J].东北大学学报(自然科学版),2005,26(8):755-758. 被引量:22
  • 4刁翔,李奇,杨兵.串级控制在加氯系统中的应用[J].中国给水排水,2006,22(4):65-67. 被引量:4
  • 5舒志兵,严彩忠.基于高阶时滞PI控制的位置伺服系统[J].电气传动,2007,37(10):48-50. 被引量:1
  • 6Kacem S,Hammadi EApproach By Localization and Multi-objective Evolutionary Optimization for Flexible Job-shop Scheduling Problems [J].IEEE Trans. System Man Cybernet C, Part C, 2002, 32(1): 408-419.
  • 7N B Ho, J C Tay. Solving Multiple-objective Flexible Job Shop Problems By Evolution and Local Search [J]. IEEE Trans. System Man Cybernet C, Part C, 2008, 38 (5):674-685.
  • 8Eusuff M M, Lansey K E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm[J]. Water Resources Planning and Management, 2003,129(3):210-225.
  • 9Elbeltagi E, Hegazy T. A Modified Shuffled Frog-leaping Optimization Algorithm Applications To Project Management [J]. Structure and Infrastructure Engineering, 2007, 3(1): 53-60.
  • 10Pan Q K, Wang L, et. An Effective Shuffled Frog-leaping Algorithm for Lot-streaming Flow Shop Scheduling Problem [J]. Int J of Advanced Manufacturing Technology, 2011, 52(5/6/7/8): 699-713.

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部