期刊文献+

TFC-Reducing:一种基于属性语义距离和规则的文本型形式背景约简方法 被引量:3

TFC-Reducing:An Approach for Reduction of Textual Formal Context Based on Semantic Distance Between Attributes and Rules
下载PDF
导出
摘要 形式概念分析作为数据分析和知识处理的形式化工具,可以有效的从海量文本数据中挖掘出人们感兴趣的知识,受到许多研究人员的推崇.形式概念分析的前提条件是必须有一个纯净、良好定义的形式背景.从文本中直接提取特征词,利用文本-特征词形成的文本型形式背景(Textual Formal Context TFC)是一个高度稀疏的二维表,带有很多的噪音信息,严重影响形式概念分析的建格效率以及概念格的结构.因此找到一种有效的文本型形式背景约简方法很有必要.本文综合考虑文本型形式背景的本质特征,从属性语义距离和数学原理出发,提出了一种文本型形式背景的约简方法TFC-Reducing,并给出文本型形式背景约简的评价方法--信息损失熵和语义覆盖度. As a tool of data analysis and formalizing for knowledge management, Formal Concept Analysis ( FCA ) can effective mine knowledge interested for people from lager textual data, and which are held in esteem by many researchers. The premise of FCA is that need a pure and well defined formal context. Extracting characteristic word directly from the text and exploiting document with characteristic words to form textual formal context ( TFC ), which lead to generating a highly sparse two-dimensional table with a lot of noise. It seriously affects efficiency of building concept lattice and the structure of lattice. Therefore, it is necessary to find an effective method for reducing the textual formal context. Comprehensively considering the nature of textual formal context in this paper, we propose a method named TFC-Reducing for the reduction of textual formal context from the view of semantic distance between attributes and mathematical theory, and give a method for evaluating reduction of textual formal context, named as information losses entropy ILE and semantic coverage SC.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第10期2170-2176,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(70871115)资助
关键词 文本型形式背景 语义距离 属性约简 领域主题词表 textual formal context semantic distance attribute reduction domain thesaurus
  • 相关文献

参考文献3

二级参考文献29

  • 1杨明.一种基于改进差别矩阵的核增量式更新算法[J].计算机学报,2006,29(3):407-413. 被引量:76
  • 2杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 3Pawlak Z. Rough sets[J ]. International journal of Information and Computer Science, 1982, 11(5) :341 - 356.
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5Blum A, Langley P. Selection of Relevant Feature and Examples in Machine Learning. Artificial Intelligence, 1997,72:245-271
  • 6Almuallim H, Dietterich T. Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence, 1994, 69(1-2) :279-305
  • 7Kira K, Rendell L. The Feature Selection Problem: Traditional Methods and A New Algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, Menlo Park, AAAI Press/The MIT Press, 1992. 129-134
  • 8Modrzejewski M. Feature Selection Using Rough Sets Theory. In: Proceedings of the European Conference on Machine Learning, Vienna, 1993. 213-226
  • 9Skowron A. The Discernibility Matrices and Functions in Information Systems, Intelligent Decision Support-Handbook of Applications and Advances of Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. 331-363
  • 10Pawlak Z. Rough Sets. International Journal of Information and Computer Sciences, 1982, 11:341-356

共引文献44

同被引文献41

  • 1宣士斌.基于概念相容性的概念树自动生成算法[J].计算机工程与应用,2007,43(6):174-177. 被引量:1
  • 2马垣,曾子维,迟呈英,等.形式概念及其新进展[M].北京:科学出版社,2011.
  • 3Gaynor M. Seltzer M. Moulton S. et al. A Dynamic. data-driv- en, decision support systernfor emergency medical services [M] //Computational Science-ICCS 2005, Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005, 3515: 703 -711.
  • 4GanterB, WilieR, Franzke C. Formal concept analysis: Mathematical foundations [M]. New York: Springer-Verlag, 1997.
  • 5Kalfoglou Y, Dasmabapatra S, Chen-Burger Y H. FCA in Knowledge Technologies: Experiences and Opportunities [M] // Concept Lattices. Berlin, Heidelberg: Springer, 2004: 252 -260.
  • 6Diaz-Agudo B, Gonzalez-Calero PA. Formal concept analysis as a support technique for CBR[J]. Knowledge-Based System, 2001, 14(3): 163-171.
  • 7Priss U. Formal concept analysis in information science [J]. Annual Review of Information Science and Technology, 2006, 40: 521 -543.
  • 8Jiang G Q, PathakJ, Chute CG. Formalizing ICD coding rules using formal concept analysis [J]. Journal of Biomedical Informatics, 2009, 42 (3): 504 - 517.
  • 9Schoening J. IEEE P1600. 1: Standard Upper Ontology Working Group (SUO WG) [EB/OL]. (2003 - 12 - 28) [2013 - 11 - 12]. http://suo. ieee. org!.
  • 10Jiang G, Ogasawara K, Endoh A, et al. Context-based Ontology Building Support in Clinical Domains Using Formal Concept Analysis[J]. International Journal of Medical Informatics, 2003, 71 (1):71-81.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部