期刊文献+

分形市场中欧式看涨期权的动态稳健定价模型

下载PDF
导出
摘要 研究具有Knight不确定性的分形金融市场,建立欧式看涨期权的动态稳健定价模型,利用拟条件期望以及拟鞅得到模型的显式解。通过分析避险参数以及进行数值计算,验证Knight不确定性对欧式看涨期权动态稳健定价的重要影响。
作者 张慧 孟纹羽
出处 《统计与决策》 CSSCI 北大核心 2012年第18期77-80,共4页 Statistics & Decision
基金 山东省软科学项目(2012RKB01333) 山东省社会科学规划研究项目(10DJGJ07) 山东省统计局重点课题(KT1052) 山东省教育厅人文社科项目(J11WF08)
  • 相关文献

参考文献9

  • 1Black, F., Scholes, M. The Pricing of Options and Corporate Liabili- ties [J]. Journal of Political Economy, 1973, 81 (3).
  • 2Fama E. The Behavior of Stock Market Prices[J]. The Journal of Busi- ness,1965,38(1).
  • 3Peters E E. Fractal Structure in the Capital Markets[J]. Financial Ana- lyst Journal, 1989,(7).
  • 4Duncan T E, Hu Y, Pasik- Duncan B. Stachastic Calculus for Frac- tional Brownian Motion I Theory[J]. SIAM J.Control Optim.,2000, (38).
  • 5Hu Y, Oksendal B. Fractional White Noise Calculus and Applications to Finance[J].Infinite Dim Anal Quantum Probab Related Topics, 2003,(6).
  • 6张卫国,肖炜麟,徐维军,张惜丽.分数布朗运动下欧式汇率期权的定价[J].系统工程理论与实践,2009,29(6):68-76. 被引量:14
  • 7张慧,陈晓兰,聂秀山.不确定环境下再装股票期权的稳健定价模型[J].中国管理科学,2008,16(1):25-31. 被引量:17
  • 8Zhang Hui, Meng Wenyu. Dynamic Robust Pricing Model of Europe- an Call Option under the Fractional Market with Knightian Uncertain- ty[C]. Advanced Materials and Information Technology Processing, 2011.
  • 9Chen Zeng Jing ,Larry Epstein. Ambiguity, Risk, and Asset Returns in Continuous Time[J]. Econometrica, 2002, (70).

二级参考文献27

  • 1张慧.条件g-期望与相关风险测度[J].山东大学学报(理学版),2005,40(3):34-40. 被引量:9
  • 2陈荣达.基于Delta-Gamma-Theta模型的外汇期权风险度量[J].系统工程理论与实践,2005,25(7):55-60. 被引量:15
  • 3傅强,喻建龙.股票价格服从指数O-U过程的再装期权定价[J].经济数学,2006,23(1):36-40. 被引量:9
  • 4Necula C. Option pricing in a fractional Brownian motion environment[R]. Working Paper of the Academy of Economic Studies, Bucharest, 2002, 27: 8079-8089.
  • 5Bender C, Elliott R J. Arbitrage in discrete version of the wick-fractional black-scholes market[J]. Mathematics of Operations Research, 2004, 29(3): 935-945.
  • 6Bjork T, Hult H. A note on wick products and the fractional black-scholes model[J]. Finance and Stochastic, 2005, 9: 197-209.
  • 7Cheidito P. Arbitrage in fractional Brownian motion models[J]. Finance and Stochastic, 2003, 7:533 553.
  • 8Rostek S, Schobel R. Risk preference based option pricing in a fractional Brownian market[J]. Applied Probability Trust, 2007, 30: 1-29.
  • 9Nuzman C J, Poor H V. Linear estimation of self-similar processes via Lamperti's transformation[J]. J Appl Probab, 2000, 37(2): 429-452.
  • 10Bender C. Integration with respect to fractional Brownian motion and related market models[D]. Ph D Thesis, Department of Mathematics and Statistics, University of Konstanz, 2003.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部