期刊文献+

基于相似像素选择的非局域SAR图像相干斑抑制 被引量:1

Non-local SAR Image Despeckling Based on Similar Pixels Selected
下载PDF
导出
摘要 该文提出了一种比值距离像素相关性模型与相似像素选择的非局域SAR图像相干斑抑制算法。首先由两像素的联合概率密度函数得出了比值距离像素相关性模型,并按错误概率最小准则训练生成了不同情况下的像素相似性阈值表,然后进行非局域窗中像素的相似性计算,并用查表所得的像素相似性阈值进行非局域窗中相似像素的选择,最后用选中的像素进行当前像素真实后向散射系数的估计。对仿真与实测SAR图像的相干斑抑制实验显示,与其它现有非局域抑斑算法相比,该文方法不仅能最大程度地去除同质区域的噪声,而且可以对边缘纹理等细节区域进行很好地重构,滤波结果显示了很好的视觉效果,并且具有较低的计算复杂度。 Based on the ratio distance pixel-relativity and thresholding pixel-similarity, a modified non-local filter is proposed for SAR image despeckling in this paper. Firstly, the ratio distance pixel-relativity is obtained by transforming the joint probability density function of two pixels. Then, a table of pixel-similarity threshold, as a function of the SAR image look number and neighboring reflectivity ratio, is trained according to the minimum error probability. Finally, the pixel-similarity threshold is applied to select similar pixels from the searching window for the real reflectivity estimation. The proposed approach was verified by synthetic and real SAR images, and was compared with the PPB and LHRS-PRM filters. The visual quality and the quantification comparison show that the proposed approach is excellent not only in the reconstruction of the uniform area, the character of edges, texture, and details, but also with the lower computation eomolexitv.
出处 《雷达学报(中英文)》 2012年第2期171-181,共11页 Journal of Radars
基金 内蒙古自治区高等学校科学技术研究项目(NJZZ11069) 内蒙古自治区自然科学基金项目(2011BS0904)资助课题
关键词 SAR图像 相干斑抑制 像素相似性 像素相关性 阈值 非局域 SAR image Despeckling Pixel similarity Pixel relativity Threshold Non-local
  • 相关文献

参考文献10

  • 1李光廷,禹卫东.基于自适应Bilateral滤波的SAR图像相干斑抑制[J].电子与信息学报,2012,34(5):1076-1081. 被引量:9
  • 2易子麟,尹东,胡安洲,张荣.基于非局部均值滤波的SAR图像去噪[J].电子与信息学报,2012,34(4):950-955. 被引量:50
  • 3Gleich D,Datcu M.Wavelet based Despeckling of SAR Ima-ges Using Gaussian MRF[].IEEE Transactions on Geosci-ence and Remote Sensing.2007
  • 4Amirmazlaghani M,Amindavar H.Two novel Bayesianmultiscale approaches for speckle suppression in SARimages[].IEEE Transactions on Geosciences and RemoteSensing.2010
  • 5C. Deledalle,L. Denis,F. Tupin.Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[].IEEE Transactions on Image Processing.2009
  • 6J S Lee,I Jurkevich,P Dewalle,et al.Speckle filtering of synthetic aperture radar images: A review[].Remote Sensing Reviews.1994
  • 7Buades A,Coll B,Morel JM.A non-local algorithm for image denoising[].IEEE Computer Society International Conference on Computer Vision and Pattern Recognition.2005
  • 8Chris Oliver,Shaun Quegan.Understanding Synthetic Aperture Radar Images[]..1998
  • 9CoupéP,Hellier P,Kervrann C.Bayesian non-local means-based speckle filtering[].IEEE International Symposia Biomedical Imaging:From Nano to Macro.2008
  • 10Feng H X,Hou B,Gong M G.SAR image despeckling based on local homogeneous region segmentation by using pixel relativity measurement[].IEEE Transactions on Geoscience and Remote Sensing.2011

二级参考文献14

  • 1Amirmazlaghani M and Amindavar H.Two novel Bayesianmultiscale approaches for speckle suppression in SARimages[J].IEEE Transactions on Geosciences and RemoteSensing,2010,48(7):2980-2993.
  • 2Tomasi C and Manduchi R.Bilateral filtering for grey andcolor images[C].Proceedings of IEEE InternationalConference on Computer Vision,New Delhi,India,1998:839-846.
  • 3Barash D.A fundamental relationship between bilateralfiltering,adaptive smoothing,and the nonlinear diffusionequation[J].IEEE Transactions on Pattern Analysis andMachine Intelligent,2002,24(6):844-847.
  • 4Elad M.On the origin of the bilateral filter and ways toimprove it[J].IEEE Transactions on Image Processing,2002,11(10):1141-1151.
  • 5Han J W,Kim J H,Cheon S H,et al..A novel imageinterpolation method using the Bilateral filter[J].IEEETransactions on Consumer Electronics,2010,56(1):175-181.
  • 6Lin C H,Tsai J S,and Chiu C T.Switching Bilateral filterwith a texture/noise detector for universal noise removal[J].IEEE Transactions on Image Processing,2010,19(9):2307-2320.
  • 7Zhang M and Gunturk B K.Multiresolution bilateral filteringfor image denoising[J].IEEE Transactions on ImageProcessing,2008,17(12):2324-2333.
  • 8Zhang W G,Liu F,and Jiao L C.SAR image despeckling viabilateral filtering[J].Electronics Letters,2009,45(15):781-783.
  • 9Oliver C and Quegan S.Understanding Synthetic ApertureRadar Images[M].Boston.Artech House,1998:75-120.
  • 10Lopes A,Touzi R,and Nezry E.Adaptive speckle filters andscene heterogeneity[J].IEEE Transactions on Geosciencesand Remote Sensing,1990,28(6):992-1000.

共引文献56

同被引文献75

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 4Caselles V, Catte F, Coll T, et al. A geometric model for active contours in image processing[J]. Nurnerische Mathematic, 1993,66 (1) :1 - 31.
  • 5Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988,1 (4) : 321 - 331,.
  • 6Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1) : 61 - 79.
  • 7Chan T F, Vese L A. Active contours without edges[J]. IEEE Trans. on Image Processing, 2001, 10(2): 266-277.
  • 8Vese L A, Chan T F. A multiphase level set framework for im- age segmentation using the mumford and shah model[J]. Inter- national Journal of Computer Vision, 2002, 50(3) : 271 - 293.
  • 9Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy[C] // Proc. of the IEEE Confer- ence on Computer Vision and Pattern Recognition ( CVPR ) , 2007 : 1 - 7.
  • 10Li C, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Trans. on Image Processing, 2008, 17(10) : 1940 - 1949.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部