期刊文献+

基于MapReduce的交互可视化平台 被引量:5

Interactive Visualization Platform Based on MapReduce
下载PDF
导出
摘要 针对长时间序列的海洋环境信息交互可视化处理问题,本文提出一种基于云环境的交互可视化平台架构。可视化平台以Hadoop为基础,将GPU、MPI并行计算引入MapReduce处理机制,实现海洋环境空间数据场大规模数据集的检索、抽取、插值计算、特征可视化分析的并行处理,达到海量数据的远程交互可视化处理目的。实验结果表明,本文提出的可视化平台架构可以有效地将MPI、GPU并行计算与MapReduce处理机制相结合,以满足海洋环境信息交互可视化的需求。 For dealing with the problem of ocean data's interactive visualization, this paper proposes an interactive visualization platform architecture based on cloud computing. It inserts GPU, MPI parallel computing into MapReduce mechanism of Hadoop to realize the parallel processing of large-scale ocean environment data sets, such as data retrieval, data extraction, data interpolation, analysis of characteristics' visualization, so that the massive data's visualization can be processed in the remote interactive way. The experiment results show that the visualization platform architecture can combine MPI, GPU with MapReduce effectively to meet the needs of ocean data's interactive visualization.
出处 《电信科学》 北大核心 2012年第9期22-27,共6页 Telecommunications Science
基金 海洋公益性行业科研专项经费项目"海洋环境信息云计算与云服务体系框架应用研究"(No.201105033)
关键词 海洋环境信息 云计算 GPU 可视化 ocean environment information, cloud computing, GPU, visualization
  • 相关文献

参考文献8

  • 1Buck I. GPU computing: programming a massively parallel processor. International Symposium on Code Generation and Optimization(CGO ' 07),California,2007:17-23.
  • 2曾诚,李兵,何克清.云计算的栈模型研究[J].微电子学与计算机,2009,26(8):22-24. 被引量:20
  • 3Polo J, Carrera D, Becerra Y, et al. Performance of accelerated MapReduce workloads in heterogengous clusters. Proceedings of 39th International Conference on Parallel Processing, San Diego, 2010:653N662.
  • 4卢风顺,宋君强,银福康,张理论.CPU/GPU协同并行计算研究综述[J].计算机科学,2011,38(3):5-9. 被引量:95
  • 5Huy T Vo, Broson J, Summa B, et al.2011 IEEE Symposium,RI, 2011:81 -89.
  • 6Condie T, Conway N, Alvaro P, et al. MapReduce OnLine, UCB/ EECS-2009-136. Berkeley: Electrical Engineering and Computer Sciences University of California,2009.
  • 7Lu Xiaoyi, Wang Bing, Zha Li, et al. Can MPI benefit Hadoop and MapReduce applications. Proceedings of 2011 International Conference on Parallel Processing Workshops, Taipei, China, 2011:371-379.
  • 8Crochow K, Howe B, Stoermer M, et al. Client+Cloud:evaluating seamless architectures for visual data analytics in the ocean sciences. Proceedings of 22nd International Conference on Scientific and Statistical Database Management, Berlin, 2010: 114-131.

二级参考文献6

共引文献113

同被引文献36

  • 1关迎晖,向勇,陈康.基于Gephi的可视分析方法研究与应用[J].电信科学,2013,29(S1):112-119. 被引量:45
  • 2王常青,王绪刚,马翠霞,邓昌智,戴国忠.使用概率规则文法评估人机界面可用性[J].计算机辅助设计与图形学学报,2005,17(12):2709-2715. 被引量:4
  • 3BUCK I. GPU computing: programming a massively parallel processor [ C]//Proc of International Symposium on Code Generation and Opti- mization. [S. 1. ] :IEEE Press, 2007: 17-25.
  • 4ANDRZEJAK A, GOMES J B. Parallel concept drift detection with online Map-Reduce[ C]//Proc of the 12th International Conference on Data Mining Workshops. [ S. 1. ] :IEEE Press, 2012: 402-407.
  • 5HONG Chu-tao, CHEN De-hao, CHEN Wen-guang, et al. MapCG: writing parallel program portable between CPU and GPU [ C ]//Proe of the 19th International Conference on Parallel Architectures and Com- pilation Techniques. [ S. 1. ] : ACM Press, 2010 : 217- 226.
  • 6HE Bing-sheng, FANG Wen-bin, LUO Qiong, et al. Mars: a Ma- pReduce framework on graphics processors[ C ]//Proc of the 17th In- ternational Conference on Parallel Architectures and Compilation Techniques. [S. 1. ] :ACM Press, 2008: 260-269.
  • 7ENMYREN J, KESSLER C W. SkePU: a multi-backend skeleton programming library for muhi-GPU systems[ C ]//Proce of the 4th In- ternational Workshop on High-level Parallel Programming and Appli- cations. [S. 1. ] :ACM Press, 2010: 5-14.
  • 8YAN Yong-hong, GROSSMAN M, SARKAR V. JCUDA: a program- mer-friendly interface for accelerating Java programs with CUDA [ C ]//Proc of the 15 th International Euro-Par Conference on Euro-Par Parallel Processing. Bedin:Springer, 2009 : 887-899.
  • 9ELTEIR M, LIN He-shan, FENG Wu-chun, et al. StreamMR: an optimized Map-Reduce framework for AMD GPUs [ C ]//Proc of the 17th IEEE International Conference on Parallel and Distributed Sys- tems. [S. 1. ] :IEEE Press, 2011 : 364-371.
  • 10Holzinger A. Usability engineering methods for software developers. Communications of ACM, 2005, 48(1): 71-74.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部