摘要
针对未知动态环境中自治水下机器人(Autonomous Underwater Vehicle,AUV)的路径规划问题,给出一种基于D-S(Shafer-Dempster)信息融合的水下栅格地图构建算法。首先通过建立一个声纳传感器模型,将声纳数据转换成栅格的信度函数分配值;接着应用D-S证据理论信息融合算法更新地图数据,从而构建出水下动态栅格地图;最后通过真实地图与融合构建地图比较,说明D-S融合算法在地图构建中的可行性。
For the path planning of Autonomous Underwater Vehicle in unknown environment, a gird map building method based on the D-S information fusion algorithm is given. Firstly, based on the establishment of an ultrasonic sensor model, the assigned gird certainty value is gotten by using the sonar data; then update the map by using D-S (Shafer-Dempster) evidential theory, and the dynamic underwater gird map is built; finally by comparing the real map with the fused map, it is shown that the fusion algorithm is proved to be effective and feasibility in map building.
出处
《系统仿真技术》
2012年第3期181-186,191,共7页
System Simulation Technology
基金
国家自然科学基金资助项目(51075257)
上海市科委创新行动计划资助项目(10550502700)
交通运输部基础研究资助项目(2011-329-810-440)
上海海事大学校基金资助项目(20100097)