期刊文献+

低信噪比下相干信号的DOA估计的白噪声滤除方法 被引量:7

A White Noise Filtering Method for DOA Estimation of Coherent Signals under Low SNR
下载PDF
导出
摘要 在波达方向估计中,"相干"和"信噪比"一直引人关注。相干会使多重信号分类等算法失效,究其原因就是信源协方差矩阵的秩亏缺。低信噪比使阵列协方差矩阵的主次特征值区分困难,造成信号和噪声的子空间划分错误。针对相干,人们往往都是从"解相干"的角度出发,通过各种手段使信源的协方差矩阵能够满秩,但并未对秩亏缺特性加以利用。基于此,本文给出了一种在低信噪比下对相干源的波达方向估计的噪声消除方法,在仅有加性白噪声的环境下,利用相干信号协方差矩阵不能满秩的特点,通过求解方程组,用求的值代替估计的协方差矩阵的相关对角元素(即对角加载处理),置换被噪声污染的对角元素,进而可以滤除掉白噪声的影响。仿真结果证实了方法的有效性。 The coherence and signal-to-noise ratio (SNR) are always more attractive on the studies of the direction-of-ar- rival (DOA) estimation. The coherence disables traditional algorithm such as multiple signal classification (MUSIC) which is caused by deficient-rank of the covariance matrix of the source. It is difficult to distinguish the primary and the secondary eigenvalue after eigenvalue decomposition (EVD) of the array covariance matrix because of the decreased SNR, and low- SNR will lead to faulty subspace partition of signal and noise. According to coherence, the traditional way is based on deco- herence and to obtain the full rank covariance matrix of the coherent signals by all means, which are not taking the advan- tage of this mathematical characteristics. Based on this, in the paper, we propose a white noise filtering method for the DOA estimation of completely coherent or partially coherent sources under low SNR environments. Only the additive white noise is considered here, firstly, we can demarcate a number of diagonal matrices in the array covariance matrix. According to that the rank of the coherent signals covariance matrix is not full, each determinant of the diagonal matrices is equal to zero, and we have related equations which correspond to the determinants. By resolving the determinant equations, one can obtain new diagonal elements which do not involve the noise components. Then, through substituting the new diagonal elements for orig- inal diagonal elements ( i. e. diagonal loading processing), we can obtain the new array covariance matrix without noise components. Finally, the DOA can be estimated further by means of forward-backward spatial smoothing (FBSS) and MU- SIC or some other algorithms. Simulation results confirm the validity of the proposed method.
出处 《信号处理》 CSCD 北大核心 2012年第7期957-962,共6页 Journal of Signal Processing
关键词 相干信号 波达方向估计 白噪声滤除 多重信号分类算法 前后向空间平滑算法 coherent signals direction-of-arrival estimation white noise filtering multiple signal classification algo-rithm forward-backward spatial smoothing algorithm
  • 相关文献

参考文献14

  • 1李会勇,侯碧波,何子述,贾可新.一种互耦条件下多径信号的2D DOA估计方法[J].信号处理,2011,27(4):634-639. 被引量:3
  • 2XU X,YE Z F,ZHANG Y F. DOA Estimation for Mixed Signals in the Presence of Mutual Coupling, Signal Pro- cessing, IEEE Transactions on. ,2009, vol. 57, nn. 9, pp. 3523 -3532.
  • 3JIANG H, WANG S X. Azimuth and elevation estimation for muhipath signals exploiting cyclostationarity and tem- poral smoothing technology, Microwave, Antenna, Propa- gation and EMC Technologies for Wireless Communica- tions, 2005. MAPE 2005. IEEE International Symposium on. ,vol. 2,pp. 1066-1070.
  • 4梁福来,黄晓涛,雷鹏正.一种新的多频段雷达信号相干算法[J].信号处理,2010,26(6):863-868. 被引量:6
  • 5CHEN B X,ZHAO G H and ZHANG S H. Altitude meas- urement based on beam split and frequency diversity in VHF radar [ J ]. IEEE Transactions on Aerospace and E- lectronic Systems,2010,46( 1 ) :3-13.
  • 6WANG J,ZHAO Y J and WANG Z G. A MUSIC like DOA estimation method for signals with low SNR [ A ]. In Millimeter Waves, 2008. GSMM 2008. Global Symposium on [ C]. Nanjing,2008 ,pp. 321-324.
  • 7Koichi ICHIGE, Kazuhiko SAITO and Hiroyuki ARAI. High resolution DOA estimation using unwrapped phaseinformation of MUSIC-based noise subspace [ J ]. IEICE Trans. Fundamentals, 2008, E91. A (8) : 1990-1999.
  • 8甘泉,孙学军,唐斌.一种基于空域滤波的空间谱估计方法[J].信号处理,2010,26(2):230-233. 被引量:7
  • 9R O Schmidt. Multiple emitter location and signal param- eter estimation [ J]. IEEE Trans. Antennas and Propaga- tion, 1986, AP-34 (3) :276-280.
  • 10R Kumaresan and D W Tufts. Estimating the angles of ar- rival of multiple plane waves [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19 ( 1 ) : 134-139.

二级参考文献26

  • 1贺治华,黎湘,张旭峰,庄钊文.基于MUSIC算法的GTD模型参数估计[J].系统工程与电子技术,2005,27(10):1685-1688. 被引量:11
  • 2王成,胡卫东,杜小勇,郁文贤.稀疏子带的多频段雷达信号融合超分辨距离成像[J].电子学报,2006,34(6):985-990. 被引量:14
  • 3付耀文,张琛,黎湘,庄钊文.多波段雷达融合一维超分辨成像技术研究[J].自然科学进展,2006,16(10):1310-1316. 被引量:13
  • 4Wang Cheng Hu Weidong Du Xiaoyong Yu Wenxian.HIGH RESOLUTION RANGE PROFILE FORMATION BASED ON LFM SIGNAL FUSION OF MULTIPLE RADARS[J].Journal of Electronics(China),2007,24(1):75-82. 被引量:2
  • 5Jin Wang, Yongjun Zhao, Zhigang Wang. A MUSIC like DOA estimation method for signals with low SNR, Global Symposium on GSMM 2008 Millimeter Waves, 21-24 April 2008 PP:321-324.
  • 6Feng-Xiang Ge, Dongxu Shen, Li V. O. K. A super-resolution DOA estimation method for low SNR and small-sized arrays. Antennas and Propagation Society International Symposium, 2004, PP(3 ) :2823-2826.
  • 7Nanyan Wang, Agathoklis P, Antoniou A. A new DOA estimation technique based on subarray beamforming. IEEE Transactions on Signal Processing, 2006, 54 ( 9 ) : 3279- 3290.
  • 8Wang N. Y , Agathokli P. A new high-resolution-and-capacity DOA estimation technique based on subarray beamforming. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp:188 - 193.
  • 9K. B. Yu and D. J. Murrow. Adaptive Digital Beamforming for Angle Estimation in Jamming. IEEE Trans. On AES, 2001,37 (2) :508-523.
  • 10Li Minghui, Lu, Yilong. Maximum Likelihood DOA Estimation in Unknown Colored Noise Fields. Aerospace and Electronic Systems, IEEE Transactions on. July 2008 44 ( 3 ) : 1079-1090.

共引文献13

同被引文献54

  • 1宋辉,高洋,陈伟,张翔.基于卷积降噪自编码器的地震数据去噪[J].石油地球物理勘探,2020(6):1210-1219. 被引量:19
  • 2张小飞,徐大专.小波域的自适应波束形成算法[J].航空学报,2005,26(1):98-102. 被引量:6
  • 3周东华 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2002..
  • 4余锦华,杨维权.多元统计分析与应用[M].广州:中山大学出版社,2003.
  • 5史峰,成本森,陈冰,等.MATLAB函数速查手册[M].北京:中国铁道出版社,2011.410-448.
  • 6Dias P, Silva G, Cruz S. Dithering performance of oversampled ADC systems affected by hysteresis[J]. Journalof the International Measurement Confederation, 2002,32(1) ;51-59.
  • 7Wagdy Z,Fawzy M. Effect of additive dither on the reso-lution of ADC ,s with single-bit or mulibit errors [ J].IEEE Transactions on Instrumentation and Measurement,1996,45(2) : 610-615.
  • 8Suresh B, WoIIman H B. Testing an ADC linearized withpseudorandom dither [ J] . IEEE Transactions on Instru-mentation and Measurement, 1998,47(4) : 839-848.
  • 9Blesser B, Locantii B. The application of narrowbandDither operating at the Nyquist frequcney in digital sys-tems to provide improved signal to noise ratio over con-ventional Dithering [J] . Audio Eng, 1987,35(6):446-454.
  • 10Anna D. A-D conversion with Dither signal-possibilities1(1) : 75-78.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部