摘要
热轧角钢有等边和不等边两种类型。由于截面对称性方面的差异,两类角钢在承受轴压力时,性能有明显差别。针对等边角钢在非弹性范围的受压承载力由弱轴弯曲屈曲控制还是强轴弯扭屈曲控制这一问题进行了分析,结果表明:在非弹性范围和弹性范围一样,杆件失效时呈弯曲屈曲,对于宽厚比较大的高强度角钢,需要计及局部屈曲效应。不等边角钢压杆失效时总是呈弯扭屈曲,其临界力计算比较复杂。通过计算分析,得出了把问题转化为按弯曲屈曲分析的等效长细比的方法。此法既适用于弹性范围,也适用于非弹性范围。和现有试验资料对比表明,文中的等边和不等边角钢轴压杆件的计算方法,都可用于设计工作。
Hot rolled angles are classified into two categories: equal-leg and unequal-leg. Owing to the difference in cross sectional symmetry, these two kinds of angles, when subjected to axial compression, behave differently. Whether the flexural buckling about the minor axis or the flexural-torsional buckling about the major axis predominates in the inelastic range for equal-leg angle struts is a controversial issue. Analysis in this regard ascertains that, in the inelastic as well as in the elastic range, angles fail by flexural buckling. But for angles of high-strength steel, with large width-thickness ratios, it is necessary to take into account the effect of leg local buckling. Unequal-leg angles always fail by flexural-torsional buckling. The calculation of the critical load of these members is rather complicated. Through analytical calculations, an equivalent slenderness ratio is derived to transform the problem into a flexural buckling one. This approach applies to both elastic and inelastic ranges. Comparison with available test data shows that suggested approaches for the equal-leg and unequal-leg angles are both qualified for design use.
出处
《建筑结构学报》
EI
CAS
CSCD
北大核心
2012年第10期134-141,共8页
Journal of Building Structures
关键词
轴压杆件
等边角钢
不等边角钢
弯扭屈曲
局部屈曲
稳定承载力
axially compressed member
equal-leg angle
unequal-leg angle
flexural-torsional buckling
local buckling
stability capacity