期刊文献+

基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断 被引量:8

Diagnosis of status of aluminum reduction cells based on symmetric Alpha-stable probabilistic distribution neural network
下载PDF
导出
摘要 在铝电解槽非稳态情况下,槽参数易发生局部突变,呈现非高斯概率分布,且各种槽参数相关性较强,无法满足概率神经网络中训练样本必须服从独立同分布的假设条件,影响槽况诊断的精确度。提出一种基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断方法,利用其对非高斯分布数据的良好近似拟合能力,改进模式层的径向基函数,提高概率神经网络对槽参数局部突变的适应性。通过取自某厂170kA大型预焙槽的样本进行检验表明,该方法能够对5种槽况做出正确的诊断,具有较强的分类精度和收敛速度。 The numerous variables in non-steady state of aluminum reduction cells are non-Gaussian and impulsive.Due to correlation of variables,the condition that training samples must be independent and identically distributed is not fulfilled.For these reasons,it is too hard to diagnose the status of aluminum reduction cells in application.A diagnosis method for the status of aluminum reduction cells based on symmetric Alpha-stable(SαS)probabilistic distribution neural network was proposed.In the method,probability density function of SαS was introduced as radial basis function of model layer into the probabilistic neural network because such function had good fitting ability to non-Gaussian distributed data.And it also improved neural network approximation ability of partial pulse burst.By using 40 groups data of 170 kA operating aluminum smelter from a factory,this method could diagnose five statuses of aluminum reduction cells correctly and had not only stronger adaptability and robustness,but also approximation reliability and fast convergence.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第10期3196-3201,共6页 CIESC Journal
基金 国家自然科学基金项目(61174015) 重庆市自然科学基金重点项目(CSTC2012JJB40006) 重庆市教委科学技术研究项目(KJ121410) 重庆科技学院校内科研基金项目(CK2011B04)~~
关键词 对称Alpha稳定分布 概率神经网络 故障诊断 铝电解槽 概率密度函数 symmetric Alpha-stable distribution probabilistic neural network fault diagnosis aluminum reduction cell probability density function
  • 相关文献

参考文献15

  • 1Vogti H, Thonstad J. The voltage of alumina reduction cells prior to the anode effect [J] . Journal of Applied Electrochemistry, 2002, 32:241 249.
  • 2Majid N A A, Taylor M P, ChenJ J, Stam M A, Mulder A, Young B R. Aluminum process fault detection by multiway principal component analysis[J] . Control Engineering Practice , 2011, 19:367-379.
  • 3李贺松,殷小宝,黄涌波,丁立伟,姜昌伟.基于阳极电流波动的铝电解槽槽况诊断系统[J].化工学报,2011,62(6):1770-1777. 被引量:12
  • 4YinEnsheng(殷恩生).160kA中心下料预焙铝电解槽生产工艺及管理[M].Changsha: Central South University Press, 2004.
  • 5Peter M Enier. Further development of the temperature model[J]. Light Metals, 1996 (9) : 445-449.
  • 6Jiang Shaolong . Research on intelligent health diagnosis system for aluminum electrolysis cells [ D]. Beijing: Tsinghua University, 2005.
  • 7Specht D F. Probabilistic neural networks [J]. Neural Networks, 1990, 3 (1): 109-118.
  • 8蔡曲林,刘普寅.一种新的概率神经网络有监督学习算法[J].模糊系统与数学,2006,20(6):83-87. 被引量:12
  • 9李春芳,刘连忠,陆震.基于数据场的概率神经网络算法[J].电子学报,2011,39(8):1739-1745. 被引量:15
  • 10Nikias C L, Shao M. Signal Processing with Alpha-stable Distributions and Applications [M]. New York= Wiley, 1995.

二级参考文献30

共引文献32

同被引文献123

引证文献8

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部