期刊文献+

结构支撑位置改变时固有频率的快速计算 被引量:1

Fast calculation for structural natural frequencies with support position changed
下载PDF
导出
摘要 用有限元法计算出弹性支撑位于网格节点上时的结构固有频率后,可采用两种方法处理支撑位于单元内部时的情形。第一种是将弹性支撑等效到单元节点上再求解特征值,第二种是结合在单元节点处,频率关于支撑位置的一阶导数(即灵敏度)值,利用单元形函数进行插值计算。两种方法都可以在不重新划分网格的情况下,获得结构的固有频率。通过分析得出第一种方法适用性较好,但计算效率较低。第二种方法要求结构的振型保持不变。数值算例结果表明:当弹性支撑的刚度和位置变化不改变结构的振型时,两种方法都有较好的计算精度。 After computing natural frequencies of a beam or a plate structure with attachment of an elastic support using the finite element method, two numerical methods were utilized to deal with the case of the support occurring in an element. The first approach was to solve the eigenvalue problem with an equivalent stiffness matrix, while the other one interpolated the natural frequencies with the sensitivities to the support position and the related element shape functions. Both the methods could gain the natural frequencies without re-meshing the structure. The former was more applicable but less efficient, whereas the latter had a limitation that the structural vibration modal shapes kept unchanged when the support was changed. Illustrative examples showed that both the methods have a higher accuracy if the varying of the stiffness and the position of the elastic support does not change the structural vibration modal shapes in a region.
作者 欧阳炎 王栋
出处 《振动与冲击》 EI CSCD 北大核心 2012年第18期1-4,33,共5页 Journal of Vibration and Shock
基金 航空基金(2007ZA53002)
关键词 弹性支撑 固有频率 有限元法 灵敏度 elastic support natural frequency FEM design sensitivity
  • 相关文献

参考文献9

二级参考文献46

  • 1许琪楼,姬同庚,姜锐,唐国明,姬鸿恩.Unified Solution Method of Rectangular Plate Elastic Bending[J].Journal of Southeast University(English Edition),2002,18(3):241-248. 被引量:9
  • 2刘金祥,廖日东,张有,杨俊武,夏秀娟.6114柴油机缸盖有限元结构分析[J].内燃机学报,2004,22(4):367-372. 被引量:21
  • 3孙亮,李顺华,李正光,吴柏生.结构动力重分析的向量值有理逼近方法[J].吉林大学学报(理学版),2005,43(3):258-261. 被引量:4
  • 4廖祖伟,刘情杰,田志敏.钢板-泡沫材料复合夹层板抗爆性能试验研究[J].地下空间与工程学报,2005,1(3):401-404. 被引量:7
  • 5I.BABUSUKA T. STROUBOULIS S K. Gangaraj. Practical aspect of a-posteriori estimation for reli able finite element analysis [J]. Comp&Stru, 1998, 66(5): 627-664.
  • 6Wang D, Jiang J S, Zhang W H. Optimization of support positions to maximize the fundamental frequency of structures [J]. International Journal for Numerical Methods in Engineering, 2004, 61: 1584-- 1602.
  • 7Christodoulou K. Structural model updating and prediction variability using Pareto optimal models [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 198: 138-- 149.
  • 8Wang Dong. Optimization of support positions to minimize the maximal deflection of structures [J]. International Journal of Solids and Structures, 2004, 7445 -- 7458.
  • 9Holland J H. Adaptation in naturaland artificial systems [M]. Ann Arbor, Michigan: University of Michigan Press, 1975.
  • 10Davis L. Handbook of genetic algorithms [M]. New York: Van Nostrand Reinhold, 1991.

共引文献72

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部