期刊文献+

基于水下图像光学成像模型的清晰化算法 被引量:9

Visibility enhancing algorithm based on optical imaging model for underwater images
下载PDF
导出
摘要 针对水下图像的纹理细节模糊、对比度低以及图像光照不均问题,通过分析水下图像的成像过程,提出一种水下图像清晰化算法。在小波域的低频子带上结合水下图像光学成像模型,先利用高斯模糊对介质散射光进行估计与去除,再采用基于局部复杂度的方法调整衰减因子,对衰减低频子图进行自适应增强;在高频子带上采用非线性变换的增强方法,进一步增强了高频信息并有效地抑制了噪声的放大。实验结果表明该算法对解决水下图像模糊和光照不均问题具有较好的效果,与基于小波变换的水下降质图像复原算法相比,具有较高的实时性。 To overcome the problems of underwater images such as fuzzy texture details, low contrast and non- illumination, the underwater images imaging process was first analyzed and then a visibility enhancing algorithm was proposed. Underwater image optical imaging model was used in the low-frequency sub-band, where image with medium scattering light was estimated and eliminated using Gaussian blur, and then attenuation factor was adjusted based on local complexity method to enhance adaptively low frequency sub-image. Non-linear transform for enhancing image was used in the high-frequency sub- band, which further enhanced the high frequency information and effectively restrained the noise magnification. The experimental results show that the algorithm can effectively deal with the problem of image blurring and non-illumination, and the running time is less than that of restoration algorithm for degraded underwater images based on wavelet transform.
出处 《计算机应用》 CSCD 北大核心 2012年第10期2836-2839,共4页 journal of Computer Applications
基金 山西省青年科技研究基金资助项目(2009021018-1) 教育部博士点新教师基金资助项目(20091420120007) 山西省科技攻关资助项目(20100321056-01)
关键词 水下图像 图像增强 小波变换 光学成像模型 低对比度 光照不均 underwater image image enhancement wavelet transform optical imaging model low contrast non- illumination
  • 相关文献

参考文献14

  • 1王彬.水下图像增强算法的研究[D].青岛:中国海洋大学,2009.
  • 2李庆忠,王文锦,刘佳旭,臧爱云.甚低比特率水下视频图像压缩编码方法[J].光电子.激光,2009,20(10):1371-1375. 被引量:7
  • 3GARCIA R, NICOSEVICI T, CUFI X. On the way to solve Lighting problems in underwater imaging [ C]// Proceedings of the IEEE OCEANS Conference. [ S. 1. ] : 1EEE, 2002:i018 - 1024.
  • 4ARNOLG-BOS A, MALKASSET J, KERVERN G. Towards a mod- el-free denoising of underwater optical images[ C]// Proceedings of the Oceans 2005-Europe. Brest, France: IEEE Computer Society, 2005:527-532.
  • 5汪荣贵,朱静,杨万挺,方帅,张新彤.基于照度分割的局部多尺度Retinex算法[J].电子学报,2010,38(5):1181-1186. 被引量:46
  • 6PADMAVATHI G, SUBASHINI P, KUMAR M M, et al. Comparison of filters used for underwater image pre-processing[ J]. International Journal of Computer Science and Network Security, 2010, 10( 1 ) : 58 - 65.
  • 7HASSAN N Y, AAKAMATSU N. Contrast enhancement technique of dark blurred image[ J]. International Journal of Computer Science and Network Security, 2006, 6(2A) : 223 - 226.
  • 8IQBAL K, SALAM R A, OSMAN A, et al. Underwater image en- hancement using an integrated colour model[ J]. International Jour- nal of Computer Science, 2007, 34(2) : 529 - 534.
  • 9LI TAO, ASARI V K. Adaptive and integrated neighborhood-de- pendent approach for nonlinear enhancement of color images [ J]. Journal of Electronic Imaging, 2005, 14(4) : 1 - 14.
  • 10王彬.基于改进等功率谱法的水下图像增强[J].中国科技信息,2009(19):46-47. 被引量:2

二级参考文献36

  • 1余松煜.数字图像处理[M].北京:电子工业大学出版社,1989..
  • 2Gonzalez R C. Digital Image Processing[M]. Beijing: Publishing House of Electronics Industry,2003.59- 170.
  • 3E Land, J McCann. Lightness and retinex theory[J].Opt Soc Amer, 1971.61(1) : 1 - 11.
  • 4Rahman Z, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement[ J].IEEE Image Processing, 1996,3 :1003- 1006.
  • 5R Kimmel, M Elad, D Shaked, K Renato, I Sobel. A variational framework for Retinex[J] Ant J Comp Vision 2003,52(1):7- 23.
  • 6Li Tao, Vijayan Asari. Modified Luminance Based MSR for Fast and Efficient Image Enhancement[J].IEEE Applied Imagery Pattern Recognition,2003,4(3):174- 179.
  • 7Wen Wang, Bo Li, Jin Zheng, Shu Xian, Jing Wang. A Fast Multi-scale Retinex Algorithm for Color Image Enhancement [A ]. Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition[ C ]. Hong Kong, IEEE Proc, 2008.30 - 31.
  • 8M Jourlin, J C Pinoli. Logarithmic image processing[ J]. Acta Stereol, 1987,6:651 - 656.
  • 9M Jourlin, J C Pinoli. A model for logarithmic image processing [ J]. J. Microsc, 1988,149: 21 - 35.
  • 10M Jourlin, J C Pinoli. Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images [ J ]. Adv Image Electron Phys, 2001,115:129 - 196.

共引文献67

同被引文献81

  • 1都安平,赵永强,潘泉,张惠娟.基于偏振特征的图像增强算法[J].计算机测量与控制,2007,15(1):106-108. 被引量:7
  • 2张磊,冯贵玉,胡德文.一种新的掌纹图像感兴趣区域提取算法[J].计算机工程与应用,2007,43(8):40-42. 被引量:5
  • 3任艳斐.直方图均衡化在图像处理中的应用[J].科技信息,2007(4):37-38. 被引量:37
  • 4Nishikawa T, Yoshida J, Sugiyama T, et al. Concrete crack detection by multiple sequential image filtering[J]. Computer-Aided Civil and Infrastructure Engineering, 2012,27(1) : 29-47.
  • 5Thakur V,Tripathi N. On the way towards efficient enhan- cement of multi-channel underwater images[J]. Interna- tional Journal of Applied Engineering Research, 2010,5 (5) :895-903.
  • 6Padmavathi G, Subashini P, Kumar M M, et al. Compari- son of filters used for underwater image pre-processing [J]. International Journal of Computer Science and Net- work Security, 2010,10(1) : 58-65.
  • 7Celik T, Tjahjadi T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling [J]. Image Processing, IEEE Transactions on, 2012, 21 (1) :145-156.
  • 8Prabhakar C J, Praveen K P. An image based technique for enhancement of underwater images[J]. International Journal of Machine Intelligence, 2012,4(3) : 217-224.
  • 9Czerwinski R N, Jones D L,O'Brien Jr W D. Line and boundary detection in speckle images[J]. ImagePro- cessing, IEEE Transactions on, 1998 ,7(12):1700-1714.
  • 10王湘晖,曾明.基于视觉感知的图像增强质量客观评价算法[J].光电子.激光,2008,19(2):258-262. 被引量:25

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部