期刊文献+

面向智能视频监控系统运动目标检测的轮廓提取方法 被引量:11

A novel contour extraction method for motion object detection in surveillance video systems
下载PDF
导出
摘要 针对传统的混合高斯模型方法易受干扰、运算量大的缺点,提出了一种应用于智能视频监控系统运动目标检测的轮廓提取方法.首先介绍了常用的运动目标检测方法;接着描述了传统的混合高斯模型方法,分析了该方法在目标检测方面存在的缺点,提出了一种新的轮廓提取方法.以过程为像素块混合高斯模型方法提取前景目标,采用数学形态学方法进行前景连通,Freeman链码寻找轮廓,Douglas-Peucker算法拟合轮廓,图像矩提取目标轮廓质心;最后对所提出的方法进行实验验证,并与传统混合高斯模型方法进行比较,实验结果证明,所提出的方法能更有效地滤除噪声,更准确地提取出目标轮廓. Aiming at the problem that the traditional Gauss mixture model method has the shortcom ings of being interfered easily and needing a large amount of calculations, this paper presents a con tour extraction method used in intelligent video surveillance system for moving object detection. First this paper introduces the commonly used method of moving target detection; then it describes the tra ditional mixed Gauss model method, and analyzes the existed shortcomings in the target detection; it puts forward a new contour extraction method. This method uses pixel blockbased Gaussian mixture model approach to extract the foreground object, uses mathematical morphology method to achieve foreground connectivity, using Freeman chain code to find the outline, uses DouglasPeucker algo rithm to fit the contour, and uses image moment to extract the centroid of target contour. Finally, experiments verify the proposed method, and it is compared with the traditional Gaussian mixture model approach. The experimental results demonstrate that the proposed method can remove the noise effectively and extract the object contour accurately.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第A01期31-35,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(40927001 61174172) 浙江省科技计划资助项目(2009C33085) 温州市科技计划资助项目(S20100029 H20100095)
关键词 运动目标检测 轮廓提取 像素块混合高斯模型方法 FREEMAN链码 DOUGLAS-PEUCKER算法 motion object detection contour extraction block-based Gaussian mixture modelingmethod Freeman chain code Douglas-Peucker algorithm
  • 相关文献

参考文献12

  • 1Hu W, Tan T, Wang L. A survey on visual surveil- lance of object motion and behaviors [ J ]. IEEE Trans- actions on Systems, Man, and Cybemetics, Part C :Applications and Reviews, 2004, 34 ( 3 ) : 334 - 352.
  • 2Chacon-Murguia M I, Gonzalez-Duarte S. An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems [ J ]. IEEE Trans- actions on Industrial Electronics, 2012, 59 (8) : 3286- 3298.
  • 3Spagnolo P, Orazio T D, Leo M. Moving object seg- mentation by background subtraction and temporal anal- ysis [J]. Image and Vision Computing, 2006, 24(5) : 411 -423.
  • 4Bennett B, Magee D R, Cohn A G, et al. Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity [J]. Image and Vision Computing, 2008, 26 ( 1 ) :67 - 81.
  • 5Dacron J, Fleet D, Beachemin S. Performance of opti- cal flow techniques [ J ]. International Journal of com- puter Vision, 1994, 12( 1 ) :42 -47.
  • 6Benezeth Y, Jodoin P M, Emile B, et al. Review and evaluation of commonly-implemented background sub- traction algorithms [ C ]//International Conference on Pattern Recognition. Florida, USA, 2008 : 1 - 4.
  • 7Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [ C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recogni- tion. Fort Collins, USA, 1999, 2: 246- 252.
  • 8SHENG Zun-bing CUI Xian-yu.An adaptive learning rate GMM for background extraction[J].Optoelectronics Letters,2008,4(6):460-463. 被引量:5
  • 9Shih F Y. Image processing and mathematical morphol- ogy: fundamentals and applications [ M ]. New York: CRC Press, 2009.
  • 10Saghri J A, Freeman H. Analysis of the precision of generalized chain codes for the representation of planar curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, 3 (5) : 533 - 539.

二级参考文献6

  • 1Stauffer C,Grimson W.E.L. Proceedings of 1999 IEEE Com-puter Society Conference on Computer vision and PatternRecognition . 1999
  • 2Stauffer C,Grimson W.E.L. IEEE Transactions on Pattern Analysis & Machine Intelligence . 2000
  • 3P.Wayne Power,,J. A. Schoonees. Proc. of IVCNZ . 2002
  • 4Raja Y,McKenna S.J.,Gong S. Computer Vision -ECCV’98. 5th European Conference on Computer Vision. Proceedings . 1998
  • 5Zhou Dongxiang,Zhang Hong. IEEE International Confer-ence on Systems, Man and Cybernetics . 2005
  • 6KaewTraKulPong P,Bowden R. Proceedings of the 2nd Eu-ropean Workshop on Advanced Video Based Surveillance Systems . 2001

共引文献4

同被引文献94

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部