期刊文献+

一种基于贝叶斯网络的故障预测方法 被引量:20

A fault prognosis method using Bayesian network
下载PDF
导出
摘要 为了研究故障在复杂工程系统中的传播机制,根据关键节点的状态异常信息预测系统发生故障的概率,提出一种基于贝叶斯网络的故障预测方法.根据工程系统自身固有的网络拓扑结构,构建了多层贝叶斯网络模型,利用定性趋势分析法将时间信息融入网络节点中,使得网络具有处理时序信息的能力,便于进行故障传播机理分析和故障预测.提出了基于元器件健康度的根节点故障概率确定方法,针对完备数据集和非完备数据集,选择不同的参数学习方法确定贝叶斯网络的条件概率表,采用多树传播算法进行联合概率推理,由系统根节点运行状态推测其余节点的故障概率.算法在Quanser三自由度四旋翼直升机上进行了仿真应用,结果验证了该方法的可行性和有效性. To find the fault propagation mechanism and predict systemlevel faults probability ac cording to the abnormalities of key components in a complex engineering system, a fault prognosis method via Bayesian network is proposed. According to the inherent topological structure of an engi neering system, a multilayer Bayesian network is developed firstly, which can handle the timede pendent information by incorporating the qualitative signal trend information into the nodes of the Bayesian network. Therefore, the developed network is suitable for failure propagation analysis and fault prediction. A method for identifying the failure probability of the root nodes in the network is also proposed based on the nodes' integrative health index. Different parameter learning algorithms are adopted to determine the conditional probability table of the Bayesian network for complete and incomplete data sets, respectively. The Pearl's poly tree propagation algorithm is used for joint prob ability reasoning. The proposed fault prognosis method can predict the probabilities of possible fail ures based on the current status of root nodes. The application results on a Quanser 3DOF hover simulation system can verify the effectiveness and feasibility of the proposed method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第A01期87-91,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(20806040 61073059 61034005)
关键词 故障预测 贝叶斯网络 定性趋势分析 概率推理 fault prognosis Bayesian network qualitative trend analysis probability reasoning
  • 相关文献

参考文献12

  • 1George V, Frank L, Michael R, et al. Intelligent fault diagnosis and prognosis for engineering systems [ M ]. New Jersey : John Wiley& ONS, inc. Hoboken, 2006.
  • 2艾红,周东华.动态系统的故障预测方法[J].华中科技大学学报(自然科学版),2009,37(S1):222-225. 被引量:29
  • 3Marcos Orchard, George Vachtsevanos. A particle fil- tering-based framework for real-time fault diagnosis and failure prognosis in a turbine engine [ C ]//2007 Mediterranean Conference on Control and Automation. Athens, Greece, 2007 : 1 - 6.
  • 4张磊,李行善,于劲松,高占宝.一种基于二元估计与粒子滤波的故障预测算法[J].北京航空航天大学学报,2008,34(7):798-802. 被引量:9
  • 5Agre G. Diagnostic Bayesian networks [ J ]. Comput- ers and Artificial Intelligence, 1996, 16( 1 ) : 47- 67.
  • 6Huard J F, Lazar A L, Lazar A A. Fault isolation based on decision-theoretic troubleshooting [ C ]//Technical Report, Center for Telecommunications Research. New York, NY: Columbia University, 1996: 1- 19.
  • 7Niedermayer Daryle. An introduction to bayesian net- works and their contemporary applications[ J]. Studies in Computational Intelligence, 2008, 156:117 -130.
  • 8何克磊,陆宁云,姜斌.一种系统健康评估模型及在四旋翼直升机平台上的仿真应用[J].南京理工大学学报,2011,38(增刊):162-166.
  • 9Janusze M, Venkatasubramanian V. Automatic genera- tion of qualitative description of process trends for fault detection and diagnosis [J ]. Engineering Applications of Artificial Intelligence, 1991, 4 ( 5 ) : 329 - 339.
  • 10Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm [ J ]. Journal of the Royal Statistical Society : Series B (Methodological), 1977, 39( 1 ) : 1 -38.

二级参考文献19

  • 1徐涛,王祁.一种神经网络预测器在传感器故障诊断中的应用[J].传感技术学报,2005,18(2):235-237. 被引量:13
  • 2吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-18. 被引量:85
  • 3Lam W, Alberto Maria Segre. A distributed learning algorithm for Bayesian inference networks[J]. TKDE, 2002, 14(1): 93- 105.
  • 4Somnath Deb, Krishna R Pattipati, Vijay Raghavan, et al. Multisignal flow graphs: a novel approach for system testability analysis and fault diagnosis[C]//New York, IEEE, 1994:361 - 373.
  • 5Ramoni M, Sebastiani P. Learning Bayesian networks from incomplete data[R]. KMi-TR-43, Knowledge Median Institute, The Open University, 1997.
  • 6Friedman N. The Bayesian structural EM algorithm[C]//Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ' 98). San Francisco, CA, Morgan Kaufmann, 1998:571-578.
  • 7Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Leafing (Historical Archive ), 1992,9 : 309 - 347.
  • 8Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics [ J]. IEEE Transactions on Control Systems Technology, 1996, 4(4) :443 -451
  • 9Swanson D C. A general prognostic tracking algorithm for predictive maintenance[C]//Proceedings of IEEE Aerospace Conference. Big Sky, Mantana: IEEE, 2001:2971-2977
  • 10Chelidze D. Multimode damage tracking and failure prognosis in electromechanical system [ C ]//Willett P K, Kirubarajan T, Components and Systems Diagnostics, Prognostics, and Health Management Ⅱ, Proceedings of SPIE. Orlando: SPIE, 2002 : 1 -12

共引文献54

同被引文献250

引证文献20

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部