期刊文献+

基于RBF神经网络的快速伺服刀架迟滞特性建模 被引量:1

Modeling of hysteresis for fast tool servo system based on RBF neural network
下载PDF
导出
摘要 为了减小压电陶瓷固有的迟滞非线性特点对快速伺服刀架(FTS)控制精度的影响,提出了一种基于RBF神经网络的快速伺服刀架迟滞特性建模方法.利用拓展输入空间法建立了FTS迟滞系统的RBF神经网络模型,通过引入指数型迟滞算子,将FTS系统的输入与迟滞算子的输出一起作为RBF神经网络的输入向量,实现了FTS迟滞系统由多值映射到单值映射的转换,进而利用神经网络对其进行建模.为了更精确地跟踪快速伺服刀架的迟滞位移曲线,通过增加调整系数σ来对迟滞算子进行改进.实验表明,该迟滞模型可以很好地预测快速伺服刀架的迟滞位移曲线,模型的验证均方差MSE=5.163 3×10-6. A hysteresis model based on RBF neural networks is proposed for reducing the nonlinearity of piezoelectric actuator which leads to the inaccuracy of fast tool servo system (FFS). The hysteresis model using RBF (radical basis function) neural networks of FFS is established based on the expanded input space method. An exponential hysteresis operator is proposed to combine the input of the FFS system and the out put of the hysteresis operator together as the input of the RBF neural network and construct an expanded input space, so as to transform the multivalued mapping into a onetoone mapping which enables neural networks to establish the model for the behavior of hysteresis of FFS. An adjustment coefficient was added to improve hysteresis curve tracing accuracy of the hysteresis oper ator. Experimental results indicate that the measured displacement curves obtained from the hysteresis model are in good agreement with the predicted curves, and the mean square error is 5. 163 3 x 106.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第A01期217-220,共4页 Journal of Southeast University:Natural Science Edition
关键词 快速伺服刀架 迟滞算子 RBF神经网络迟滞模型 fast tool servo hysteresis operator RBF(radical basis function) neural network hyster-esis model
  • 相关文献

参考文献11

  • 1王仕璠 朱自强.现代光学原理[M].成都:电子科技大学出版社,1998..
  • 2Asoh H, Oide A, Ono S. Formation of microstructured silicon surfaces by electrochemical etching using colloi- dal crystal as mask [ J ]. Electrochemistry Communica- tions,2006,8(12) :1817 - 1820.
  • 3Huang Ying, Liu Ran, Lai Jianjun, et al. Design and fabrication of negative microlens array [ J ]. Optics & La- ser Technology ,2008, 40 ( 8 ) : 1047 - 1050.
  • 4Sze-Weia Gan, Han-Seok Lira, Rahrnan M, et al. A fine tool servo system for global position error compen- sation for a miniature ultra-precision lathe [J]. Machine Tools and Manufacture,2007, 47 ( 7/8 ) : 1302 - 1310.
  • 5Gao W, Tano M, Takeshi A, et al. Measurement and compensation of error motions of a diamond turning rna- chine[J]. Precision Engineering, 2007,31 ( 3 ) : 310 - 316.
  • 6杨元华.基于FTS的微结构功能表面超精密切削加工关键技术[D].哈尔滨:哈尔滨工业大学,2007.
  • 7Li Chuntao, Tan Yonghong. A neural networks model for hysteresis nonlinearity [J]. Sensors and Actuators, 2004, 7112(3) : 49 -54.
  • 8Ge P, Jouaneh Musa. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators [ J ]. Precision Engineering, 1997, 20 (2) :99 - 111.
  • 9Adly A A, Abd-El-Hafiz S K. Using neural networks in the identification of preisach-type hysteresis models [ J ]. IEEE Trans Magnetics,1998, 34(3) :629 -635.
  • 10Claudio S, Ciro V. Magnetic hysteresis modeling via feed-forward neural networks[J]. IEEE Trans Magnet- ics,1998, 34 (3) :623 -628.

共引文献9

同被引文献9

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部