期刊文献+

极值分布下联合位置与散度模型的变量选择 被引量:6

Variable Selection in Joint Location and Dispersion Models of the Extreme-value Distribution
下载PDF
导出
摘要 极值分布在地震、洪灾和其它自然灾害的预测中是非常有用的.在许多应用方面,很有必要对散度建模.本文推广经典极值回归模型,研究了联合位置与散度模型,并提出了一种同时对位置模型和散度模型的变量选择方法.同时证明了惩罚极大似然估计具有相合性和oracle性质,通过随机模拟研究了所提出方法的有限样本性质. The extreme-value distribution is very useful in predicting the probability that an extreme earthquake, flood or other natural disaster will occur. In many applications, there is a great need to model the dispersion. In this paper, a unified procedure is proposed to simultaneously select signifi- cant variables in joint location and dispersion models which provide a useful extension of the general extreme-value regression model. It is further shown that the presented penalized maximum likelihood estimator enjoys the consistency and the oracle property. Numerical simulation is conducted to exam- ine the finite sample properties of the proposed method.
出处 《工程数学学报》 CSCD 北大核心 2012年第5期670-680,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11126309 11026209) 云南省自然科学基金(2009ZC039M 2011FB016 2011FZ044) 昆明理工大学博士科研启动基金(2009-024)~~
关键词 异方差模型 联合位置与散度模型 惩罚极大似然估计 变量选择 估计理论 heteroscedastic regression models joint location and dispersion models penalized maxi-mum likelihood estimator variable selection estimation theory
  • 相关文献

参考文献15

  • 1韦博成,林金官,吕庆哲.回归模型中异方差或变离差检验问题综述[J].应用概率统计,2003,19(2):210-220. 被引量:8
  • 2Aitkin M. Modelling variance heterogeneity in normal regression using GLIM[J]. Journal of the Royal Statistical Society Series C, 1987, 36(3): 332-339.
  • 3Engel l, Huele A F. A generalized linear modeling approach to robust design[J] Technometrics, 1996, 38(4): 365-373.
  • 4Smyth G K. Generalized linear models with varying dispersion[J]. Journal of the Royal Statistical Society Series B, 1989, 51(1): 47-60.
  • 5Lee Y, Nelder J A. Generalized linear models for the analysis of quality improvement experiments[J]. Canadian Journal of Statistics, 1998, 26(1): 95-105.
  • 6Taylor J T, Verbyla A P. Joint modelling of location and scale parameters of the t distribution[J]. Statistical Modelling, 2004, 4(2): 91-112.
  • 7杨宜平,薛留根,程维虎.纵向数据下部分线性EV模型的变量选择[J].工程数学学报,2011,28(2):211-219. 被引量:1
  • 8Fan J Q, Lv J C. A selective overview of variable selection in high dimensional feature space[J]. Statistica Sinica, 2010, 20(1): 101-148.
  • 9Fan J Q, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360.
  • 10Tibshirani R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288.

二级参考文献24

共引文献11

同被引文献18

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部