期刊文献+

无穷远分歧的离散周期边值问题的多个解(英文)

Bifurcation from Infinity and Multiple Solutions for Discrete Periodic Boundary Value Problems
下载PDF
导出
摘要 本文讨论了一类二阶非线性含参离散周期边值问题多个对称解的存在性.在非线性项次线性增长的条件下,本文确定了参数依赖于共振点的不同取值范围,在不同范围内的参数确保了问题不同个数对称解的存在性,并且指明了这些解的奇偶性.本文使用的主要方法是Leray-Schauder原理和分歧定理. This paper discusses a class of nonlinear second order discrete boundary value problems with parameter. We obtain the multiplicity result of symmetric solution for the problem in the condition that the nonlinear term grows in sublinear state. We determine different number of symmetric solutions of the problem in different range of the parameter near the resonant point, and each of theses solutions has its specific parity. The main methods used in this paper include Leray-Schauder principle and bifurcation theorem.
出处 《工程数学学报》 CSCD 北大核心 2012年第5期773-779,共7页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11126296) the Scientific ResearchPromotion Funds for Young Teachers in Northwest Normal University(SKQNGG10018 NWNU-LKQN-10-1)
关键词 周期边值问题 特征值 分歧 periodic boundary value problem eigenvalues solution bifurcation
  • 相关文献

参考文献10

  • 1Ma R Y. Bifurcation from infinity and multiple solutions for periodic boundary value problems[J]. Nonlinear Analysis, 2000, 42(1): 27-39.
  • 2Ma R Y, Ma H L. Unbounded perturbations of nonlinear discrete periodic problem at resonance[J]. Non- linear Analysis: Theory, Methods and Applications, 2009, 70(7): 2602-2613.
  • 3Rabinowitz P. On bifurcation from infinity[J]. Journal of Differential Equations, 1973, 14(3): 462-475.
  • 4Atici F M, Cabada A. Existence and uniqueness results for discrete second-order periodic boundary value problems[J]. Computers and Mathematics with Applications, 2003, 45(6-9): 1417-1427.
  • 5Atici F M, Guseinov G S. Positive periodic solutions for nonlinear difference equations with periodic coef- ficients[J]. Journal of Mathematical Analysis and Applications, 1999, 232(1): 166-182.
  • 6Agarwal R P, O'Regan D. Boundary value problems for discrete equations[J]. Applied Mathematics Letters, 1997, 10(4): 83-89.
  • 7Ma R Y. Nonlinear discrete Sturm-Liouville problems at resonance[J]. Nonlinear Analysis: Theory, Methods and Applications, 2007, 67(11): 3050-3057.
  • 8Iannacci R, Nkashama M N. Unbounded perturbations of forced second order ordinary differential equations at resonance[J]. Journal of Differential Equations, 1987, 69(3): 289-309.
  • 9Mawhin J, Schmitt K. Landesman-Lazer type problems at an eigenvalue of odd multiplicity[J]. Results in Mathematics, 1988, 14(1-2): 138-146.
  • 10Peitgen H O, Schmitt K. Global analysis of two-parameter linear elliptic eigenvalue problems[J]. Transac- tions of the American Mathematical Society, 1984, 283(1): 57-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部