期刊文献+

硅橡胶/炭黑复合材料在外场作用下的导电响应行为 被引量:2

Conductive response behaviors of silicone rubber/carbon black composites in external fields
下载PDF
导出
摘要 通过机械共混法制备了甲基乙烯基硅橡胶(MVQ)/炭黑(CB)复合材料,研究了复合材料的压阻特性、温阻特性、在压缩循环下的压阻稳定性和重复性能以及电阻弛豫特性,并提出了新的压阻数学模型。结果表明,在渗滤阈值附近,MVQ/CB复合材料有最显著的压阻效应;随着CB含量的增加,压阻效应出现一个临界压力;在40℃时复合材料由正温阻特性转变为负温阻特性;通过预压缩和增加压缩循环次数,可以提高压敏导电橡胶的压阻重复性和稳定性。应用隧道电流理论构建的压阻效应数学模型能同时很好地模拟MVQ/CB复合材料的正压阻系数效应和负压阻系数效应。 The methyl vinyl silicone rubber/car- bon black(MVQ/CB) composites were prepared by mechanical mixing. Piezoresistive characteristic, thermoresistive characteristic, piezoresistive stability and repeatability at compression cycles, and resist- ance relaxation properties were studied. In addition, a novel piezoresistive mathematical model was put forward. The results showed that the composites had remarkable piezoresistive effect near the percolation threshold; piezoresistive effect exhibitied a critical pressure with the increase of the CB content; the thermoresistive characteristic transformed from posi-tire temperature coefficient effect to negative temper- ature coefficient effect at 40 % ; Through precom- pression and increasing compression cycles, the pie- zoresistive repeatability and stability were improved. The piezoresistive mathematical model derived from tunnel current theory could fit with the positive pres- sure coefficient effect and negative pressure coeffi- cient effect.
出处 《合成橡胶工业》 CAS CSCD 北大核心 2012年第5期371-377,共7页 China Synthetic Rubber Industry
关键词 炭黑 甲基乙烯基硅橡胶 压阻特性 温阻特性 压阻稳定性 压阻重复性 压阻数学模型 carbon black methyl vinyl siliconerubbe piezoresistive characteristic thermoresistivecharacteristic piezoresistive stability piezoresistiverepeatability piezoresistive mathematical model
  • 相关文献

参考文献15

  • 1Xu Fei, Ge Yunjian, Yu Yong, et al. The design of a novel flexible tactile sensor based on pressure-conductive rubber[ J]. Sensors & Transducers,2011,124 ( 1 ) : 19 - 29.
  • 2Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[ J ]. Nature Materials, 2010,9 ( 10 ) : 859 - 864.
  • 3Sekitani T, Yokota T, Zschieschang U, et al. Organic nonvol- atile memory transistors for flexible sensor arrays[J]. Science, 2009,326(5959) :1516 - 1519.
  • 4Mclachlan D S, Blaszkiewicz M, Newnham R E. Electrical re- sistivity of composites [ J ]. Journal of the American Ceramic Society, 1990,73 (8) :2187 - 2203.
  • 5Nakamura S, Sawa G. Percolation phenomena and electrical conduction mechanism of carbon black-polyethylene composites [C]//IEEE. Proceedings of 1998 international symposium on electrical insulating materials. Toyohashi : 1998,333 - 336.
  • 6Sheng Ping, Klafter J. Hopping conductivity in granular disor- dered systems[ J ]. Physical Review ( part B ), 1983,27 ( 4 ) : 2583 - 2586.
  • 7Sheng Ping, Sichel E K, Gittleman J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites [ J ]. Physical Review Letters, 1978,40 ( 18 ) : 1197 - 1200.
  • 8Medalia A I. Electrical conduction in carbon black composites [ J ]. Rubber Chemistry and Technology, 1986,59 ( 3 ) :432 - 454.
  • 9Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film [ J ]. Journal of Applied Physics, 1963,34 ( 6 ) : 1793 - 1803.
  • 10van Beek L K H, van Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates [ J]. Journalof Applied Polymer Science, 1962,6 ( 24 ) : 651 - 655.

二级参考文献11

共引文献2

同被引文献503

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部