期刊文献+

模糊自适应滤波方法在相对导航系统中的应用 被引量:3

A New Fuzzy Adaptive Filtering for Relative Navigation System
下载PDF
导出
摘要 编队飞行中需要确定主机和从机之间的相对位置关系,就是要解决导航定位问题。针对无人机在编队飞行过程中由于机动性较大,惯性元器件测量容易出现偏差,进而影响系统的运动状态方程的情况,或者是在系统噪声与观测噪声的统计特性不能够准确得到的情况,提出了一种新的模糊自适应滤波方法。根据实时得到的量测新息的实际方差与理论方差的差值和量测新息的均值,按照判定条件选择适合的滤波方法,然后由设计的模糊推理系统在线实时调整系统噪声和量测噪声矩阵,或是调整状态误差协方差阵即强跟踪滤波,使无人机编队飞行即使在恶劣的环境下依然保持确定的队形不变。仿真结果表明,该算法具有较好的自适应效果。 In UAV formation flight, the relative position of the lead aircraft and follower needs to determined, which is to solve the navigation problem. Since the UAV has great maneuverability during formation flight, the inertial measurement components prone to having bias that may affect the motion state equations of the system. Sometimes statistical properties of the system noise and observation noise can not be obtained accurately. To solve the problems, an improved adaptive filtering method was proposed. According to the difference of the actual covariance of real-time measurement and the theoretical covariance, and the mean of the measurement values, an appropriate filtering method was selected based on the conditions. Then, the designed fuzzy inference systems was used to adjust the system noise matrix and the measurement noise matrix, or adjust the state error covariance matrix, thus the UAV formation flight could keep the original formation even under harsh environment. Simulation results show that the algorithm has fine adaptability.
出处 《电光与控制》 北大核心 2012年第10期87-91,共5页 Electronics Optics & Control
关键词 相对导航 编队飞行 INS/GPS 模糊自适应滤波 四元数 relative navigation formation flight INS/GPS FLAS quaternion
  • 相关文献

参考文献7

二级参考文献24

  • 1张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79. 被引量:21
  • 2景韶光,陈新海.GPS/SINS组合导航系统在飞航导弹中的应用[J].西北工业大学学报,1997,15(1):79-83. 被引量:2
  • 3[2]Xia Qijun, Rao Ming. Adaptive fading Kalman filter with an application[J]. Automafica, 1994, 30(8): 1333 ~ 1338
  • 4[5]Da R, Lin C F. Failure detection and isolation structure for global positioning system autonomous integrity monitoring [J]. Journal of Guidance, Control, and Dynamics, 1995,18(2)
  • 5SIMON J J.The scaled unscented transformation[A].Proceedings of American Control Conference[C],2002.
  • 6UHLMANN J S,DURRANT W H F.A new method for the nonlinear transforMation of mcans and covariance in filters and estimators[J].IEEE Transactions on Automatie Control,2000,45(3):477-482.
  • 7JULIER S J,UHLMANN J K.The scaled unscented transformation[C].Proceedings of the American Control Conference,AK May 8-10,2002:4555-4559.
  • 8SASIADEK J Z,HARTANA P.Sensor data fusion using Kalman filter[J].ISIF,2000:19-25.
  • 9马艳.数据融合技术在多传感器组合导航中的应用[M].南京:南京航空航天大学,2000..
  • 10Escam illa-Ambrosio P J, Mport N. Multiseusor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic Performance Assessment. Proceedings of the Fifth Intemational Conference on Information Fusion, FUSION 2002. Annapolis, USA,July 2002, 2:1542- 1549.

共引文献106

同被引文献27

  • 1贾永楠,田似营,李擎.无人机集群研究进展综述[J].航空学报,2020(S01):4-14. 被引量:92
  • 2Garrison J L, Axelrad P. Application of the extended Kalman filter for relative navigation in an elliptical orbit [J]. Spaceflight Mechanics, 1996: 693 - 712.
  • 3Lee D J. Nonlinear Bayesian filtering with applications to estimation and navigation[D]. College Station, USA:Texas A & M University, 2005.
  • 4Chen L J, Seereeram S, Mehra R K. Unscented Kalman filter for multiple spacecraft formation flying [C] // Proceedings of American Control Conference. [S. l]: IEEE, 2003:1752 - 1757.
  • 5Pachter M, Chandler P R. Universal linearization concept for extended Kalman filters [ J ]. IEEE Transaction on Aerospace and Eletronic System, 1993, 29(3) :946- 961.
  • 6Alfriend K T, Vadali S R, Gurfil P. Spacecraft formation flying: dynamics, control, and navigation [ M ]. Kidlington: Butterworth-Heinemann, 2009: 83 - 122.
  • 7Xiong K, Wei C, Liu L. Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2010,40(2) :399 - 405.
  • 8刘银萍,杨宜民.多机器人编队控制的研究综述[J].控制工程,2010,17(S3):182-186. 被引量:5
  • 9楚瑞.基于UKF算法的编队卫星相对导航技术研究[J].电子科技,2009,22(7):5-8. 被引量:2
  • 10王小刚,路菲,崔乃刚.Huber-based滤波及其在相对导航问题中的应用[J].控制与决策,2010,25(2):287-290. 被引量:5

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部