期刊文献+

求解P_0-函数混合互补问题的正则化光滑牛顿算法

A Regularized Smoothing Newton Method for Mixed Complementarity Problem with P_0-function
原文传递
导出
摘要 基于扰动的CHKS光滑MCP函数,提出了求解P0-函数混合互补问题的一种正则化的光滑方法.该算法中的正则参数和光滑参数都是彼此独立的变量,并且可以通过线性方程组的迭代很快得到. Based on the Chen-Harker-Kanzow-Smale smoothing function,a regularized smoothing Newton method for mixed complementarity problems with a P0-function is proposed.The regularization parameter and the smoothing parameter here are independent variables and can be immediately obtained through iteration of linear system.Numerical results show that the algorithm is promising.
作者 唐嘉 马昌凤
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期14-19,17-19,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11071041 11171257)
关键词 混合互补问题 正则化光滑牛顿算法 局部收敛性 全局收敛性 mixed complementarity problem regularized smoothing Newton method global convergence local convergence
  • 相关文献

参考文献8

  • 1Tang Jia, Liu Sanyang. A smoothing broyden-like method for solving the mixed complementarity problem with aFo-function [J]. Nonlinear Analysis: Real World Applications,2010 (11) : 2770 - 2786.
  • 2Tang Jia,Liu Sanyang? Ma Changfeng. One-step smoothing Newton method for solving the mixed complementarityproblem with a Po -function [J]. Applied Mathematics and Computation? 2009,215 (6) : 2326 - 2336.
  • 3Chen B, Chen X,Kanzow C. A penalized fischer-burmeister NCP-function : theoretical investigate and numericalresults [J]. Mathematical Programming, 2000,88: 211 - 216.
  • 4Sun D,Womersley R S. A new unconstrained differentiable merit function for box constrained variational inequa-lity problems and a damped Gauss-Newton method [J]. SIAM Journal on Optimization? 1999,9: 388 - 413.
  • 5Palais R S,Teng C L. Critical point theory and submanifold geometry [C]. Berlin : Springer-verlag,1988.
  • 6黄正海,韩继业,徐大川,张立平.P_0函数非线性互补问题的非内部连续化算法[J].中国科学(A辑),2001,31(6):488-494. 被引量:2
  • 7Clarke F H. Optimization and nonsmooth analysis [M]. New York : Wiley, 1983.
  • 8Qi L. Convergence analysis of some algorithms for solving nonsmooth equations [J]. Mathematics of OperationsResearch, 1993 . 18 : 227 - 244.

二级参考文献24

  • 1[1]Burke J, Xu S. The global linear convergence of a non-interior path-following algorithm for linear complementarity problems. Math Oper Res, 1998, 23(3): 719~734
  • 2[2]Chen B, Chen X. A global and local superlinear continuation-smoothing method for P0+R0 and monotone NCP. SIAM J Optim, 1999, 9(3): 624~645
  • 3[3]Chen B, Xiu N. A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J Optim, 1999, 9(3): 605~623
  • 4[4]Facchinei F, Kanzow C. Beyond monotonicity in regularization methods for nonlinear complementarity problems. SIAM J Control Optim, 1999, 37(4): 1150~1161
  • 5[5]Gowda M S, Tawhid M A. Existence and limiting behavior of trajectories associated with P0-equations. Comput Optim Appl, 1999, 12(1-3): 229~251
  • 6[6]Sun D. A regularization Newton method for solving nonlinear complementarity problems. Appl Math Optim, 1999, 40(3): 315~339
  • 7[7]Ravindran G, Gowda M S. Regularization of P0-functions in box variational inequality problems. SIAM J Optim, 2000, 11(3): 748~760
  • 8[8]Chen B, Harker P T. A non-interior-point continuation method for linear complementarity problem. SIAM J Matrix Anal Appl, 1993, 14(4): 1168~1190
  • 9[9]Billus S C, Dirkse S P, Ferris M C. A comparison of algorithms for large-scale mixed complementarity problems. Comput Optim Appl, 1997, 7(1): 3~25
  • 10[10]Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM J Matrix Anal Appl, 1996, 17(4): 851~868

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部