期刊文献+

指纹与指静脉的特征层动态加权融合识别

Feature level fusion of fingerprint and finger vein biometrics based on dynamic weighting
原文传递
导出
摘要 结合指纹与指静脉两种生物特征的优点进行多模态特征识别,提出一种特征层动态加权融合匹配算法。在图像预处理的基础上分别提取两模式源的有效特征矢量,根据近邻消除和特殊区域保留原则对特征矢量进行降维;从待识别特征角度对特征点集的相对质量进行评价,根据对双模态特征优和差的分类引入动态加权策略,提高质量较好特征所占权重,削弱低质量及伪特征对识别结果的影响,实现了特征层特征自适应优化融合。在FVC2000公开指纹库和指静脉自建数据库上的测试取得了98.9%的识别率,较指纹、指静脉单模态识别分别提高了6.6%和9.6%,较匹配层加权平均融合识别提高了5.4%。 To study the fusion at feature extraction level for fingerprint and finger vein biometrics, a dynamic weighting matching algorithm based on predictive quality evaluation of interest features is proposed. The proposed approach is based on the fusion of the two traits by extracting independent feature point-sets from the two modalities, and making the two point-sets compatible for concatenation. According to the results of features evaluation, dynamic weighting strategy is introduction for the fusion biometrics. The weight of excellent features in fusion is improved, aiming to weaken the influence of low quality and false features so that better effects of fusion can be achieved. Experimental results based on FVC2000 and self-constructed databases of finger vein show that our scheme achieves 98.9% recognition rate, compared with fingerprint recognition and finger vein recognition increased by 6. 6% and 9. 6% respectively, compared with fusion recognition at matching level increased by 5.4 %.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期86-93,共8页 Journal of Chongqing University
基金 中央高校基本科研业务费资助项目(CDJXS11150014) 国家重点实验室访问学者基金(2007DA10512709403)
关键词 自动指纹识别 静脉识别 特征抽取 特征层融合 动态加权 automatic fingerprint verification vein recognition feature extraction feature level fusion dynamic weighting
  • 相关文献

参考文献16

  • 1Jain A K. Biometric recognition: Q&-A [J]. Nature,2007,449(6) : 38-40.
  • 2Maltoni M, Maio D,Jain A K,et al. Handbook ofFingerprint Recognition[M]. 2nd ed. London: SpringerPress, 2009.
  • 3Jain A K, Ross A. Multibiometric systems [ J ].Communications of the ACM, 2004, 47 (1): 34-40.
  • 4Darwish A A,Zaki W M,Saad O M, et al. Humanauthentication using face and fingerprint biometrics[C] / Proceedings of the 2nd International Conferenceon Computational Intelligence, Communication Systemsand Networks? July 28-30,2010,Liverpool, UnitedKingdom. [S. 1. ] : IEEE Computer Society, 2010:274-278.
  • 5Hong L, Jain A . Integrating faces and fingerprints forpersonal identification [ J ]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1998,20(12): 1295-1307.
  • 6孙傲冰,张德贤,张苗.基于多元特征的智能型生物识别模型[J].计算机科学,2010,37(2):221-224. 被引量:2
  • 7Ross A, Govindarajan R . Feature level fusion usinghand and face biometrics [C] // Proceedings of SPIEConference on Biometric Technology for HumanIdentification II, March 28-29,2005,Orlando, UnitedStates. [S. 1. ] : Citeseer,2005 ,5779 : 196-204.
  • 8Rattani A, Kisku D R,Bicego M,et al. Feature levelfusion of face and fingerprint biometrics [ C ] //Proceedings of the First IEEE International Conferenceon Biometrics: Theory, Applications, and Systems,September 27-29,2007,Crystal City, VA,UnitedStates. Piscataway, N.J.,USA: IEEE Press, 2007 :1-6.
  • 9Zhou X L,Bhanu B, Feature fusion of face and gait forhuman recognition at a distance in video [ C ] //Proceedings of the 18th International Conference onPattern Recognition, August 20-24,2006, HongKong, China. [S. 1. ] : IEEE Computer Society , 2006 :529-532.
  • 10罗希平,田捷.自动指纹识别中的图像增强和细节匹配算法[J].软件学报,2002,13(5):946-956. 被引量:229

二级参考文献56

共引文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部