期刊文献+

格网划分的最邻近点搜索方法 被引量:5

A method of closest points searching based on grid partition
原文传递
导出
摘要 为了提高迭代最近点(ICP)算法中最邻近点搜索的存储和计算效率,本文通过对盒子结构方法优、缺点的深入分析,提出了基于格网划分的最邻近点搜索方法。该方法充分考虑了3D点云获取时的投影特性,将点云投影到某一坐标平面,并基于格网划分进行存储,使最邻近点的搜索限制在较小的范围。不同类型的模拟数据和实测数据试验均表明,该方法能够在不损失匹配精度和拉入范围的前提下,显著提高存储和计算效率。 In order to improve the storage and computational efficiency of closest points searching of the Iterative Closest Point (ICP) algorithm, by a deep analysis of advantages and disadvantages about the method of boxing structure, a method of closest points searching based on grid partition was proposed in the paper. This method considered the projection characteristic of the 3D points cloud being acquired fully, and projected the points cloud to one of the coordinate planes, and stored the points cloud based on grid parti- tion, then limited the closest points searching in a smaller extent. Both the tests with simulated data of different kinds and real meas- ured data showed that this method could significantly improve the storage and computational efficiency without losing the registration precision and pull-in range.
出处 《测绘科学》 CSCD 北大核心 2012年第5期90-93,共4页 Science of Surveying and Mapping
关键词 3D点云 表面匹配 迭代最近点算法(ICP) 最邻近点搜索 盒子结构 格网划分 3D points cloud surface registration Iterative Closest Point (ICP) algorithm closest points searching boxingstructure grid partition
  • 相关文献

参考文献17

  • 1AKCA D, GRUEN A. Recent advances in least squares 3D surface matching[C]//Gruen A,Kahmen H. Optical 3-D Measurement Techniques VII. Vienna, Austria: 2005,II: 197- 206.
  • 2XIE Ze-xiao, XU Shang, LI Xu-yong. A high-accuracy method for fine registration of overlapping point clouds [ J ]. Image and Vision Computing,2010,28 (4).
  • 3张同刚,岑敏仪,冯义从.用于无控制DEM匹配的LZD和ICP算法的比较[J].中国图象图形学报,2006,11(5):714-719. 被引量:11
  • 4郑德华,岳东杰,岳建平.基于几何特征约束的建筑物点云配准算法[J].测绘学报,2008,37(4):464-468. 被引量:54
  • 5BESL PJ, MCKAY N D. A method for registration of 3-D shapes[ C ]//IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992,14 (2) : 239- 256.
  • 6CHEN Y, MEDIONI G. Object modeling by registration of multiple range images [ J]. Image and Vision Computing, 1992,10(3) : 145-155.
  • 7ZHANG Zhengyou. Iterative point matching for registration of free-form curves and surfaces [ J ]. International Journal of Computer Vision, 1994,13 ( 2 ) : 119-152.
  • 8NUCHTER A, LINGMANN K, Joachim hertzberg, cached k-d tree search for IC Palgorithms [ C ]//IEEE Computer Society. Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling. Montreal, Canada: 2007:419-426.
  • 9SALVI J,MATABOSCH C,FOFI D,Jose Pforest. a review of recent range image registration methods with accuracy evaluation [ J ]. Image and Vision Computing, 2007,25 (5).
  • 10LIU Yonghuai. Constraints for closest point finding [ J ]. Pattern Recognition Letters,2008,29 (7) : 841-851.

二级参考文献27

  • 1郑德华.三维激光扫描影像拼接模型及试验分析[J].河海大学学报(自然科学版),2005,33(4):466-471. 被引量:19
  • 2BESI. P J, MCKAY N D. A Method for Registration of 3D Shape[J]. IEEE Transactions on Pattern Analysis and Ma chine Intelligencc, 1992,14:239-256.
  • 3CHEN Y,MEDIONI G.Object Modeling by Registration of Multiple Range Images[J].Image and Vision Computing,1992,10:145-155.
  • 4BERGEVIN R.SOUCY M.GAGNON H,LAURENDEAU D.Toward a General Multi-view Registration Technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(5).
  • 5PARK Soon-Yong,SUBBARAO M.An Accurate and Fast Point-to-Plane Registration Technique[J].Pattern Recognition Letters,2003,24:2967-2976.
  • 6JOHNSON A E,KANG S B.Registration and Integration of Textured 3D Data[J].Image and Vision Computing,1999,17:135-147.
  • 7GELFAND N,IKEMOTO L,RUSINKIEWICZ S.LEVOY M.Geometrically Stable Sampling for the ICP Algorithm[EB/OL].http:www.cs.princeton.edu/gfx/bubs/Gelfand 2003 GSS/stabicp,pdf.2004-05-18.
  • 8Zitová B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21 (11):977 ~ 1000.
  • 9Habib A F,Lee Yong-Ran,Morgan M.Surface matching and change detection using a modified Hough transformation for robust parameter estimation[J].Photogrammetric Record,2001,17 (98):303 ~ 315.
  • 10Habib A,Kelley D.Automatic relative orientation of large scale imagery over urban areas using modified iterative hough transform[J].ISPRS Journal of Photogrammetry and Remote Sensing,2001,56(1):29 ~41.

共引文献63

同被引文献45

  • 1刘春,吴杭彬.基于真三维TIN的三维激光扫描数据压缩方法[J].武汉大学学报(信息科学版),2006,31(10):908-911. 被引量:34
  • 2骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 3Akca D. Least Squares 3D surface matching[M]. Insti- tut for Geodsisie und Photogrammetrie an der Eidgenossischen Technischen Hochschule,2007.
  • 4Akca D,Gruen A. Recent advances in least squares 3D surface matehing[C]//Gruen A,Kahmen H. Optical 3- D Measurement Techniques Ⅶ, 2005 : 197-206.
  • 5Besl P J, MeKay N D. A method for registration of 3-D shapes[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2) : 239-256.
  • 6Chen Y,Medioni G. Object modeling by registration of multiple range images[J]. Image and Vision Compu- ting, 1992,10(3) : 145-155.
  • 7ZHANG Zhengyou. Iterative point matching for registra- tion of free-form curves and surfaces [J]. International Journal of Computer Vision, 1994,13 (2) : 119-152.
  • 8SalviI J, Matabosch C, Foil D, Josep forest. A review of re- cent range image registration methods with accuracy evalua- tion[J]. Image and Vision Computing,2007,25(5) :578-596.
  • 9Nuchter A, Lingemann K, Hertzberg J. cached k-d tree search for ICP algorithms[C]//IEEE Computer Socie- ty. Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling. Montreal,Cana- da, 2007 : 419-426.
  • 10Akca D, Gruen A. Fast correspondence search for 3D surface matching[C]//ISPRS Workshop"Laser Scan- ner 2005". Enschede,Netherlands,2005 : 186-191.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部