期刊文献+

Modified homogeneous parameterization for monocular SLAM

Modified homogeneous parameterization for monocular SLAM
下载PDF
导出
摘要 Feature initialization is an important issue in the monocular simultaneous locahzation ana mapping (SLAM) literature as the feature depth can not be obtained at one observation. In this paper, we present a new feature initialization method named modified homogeneous parameterization (MHP), which allows undelayed initialization with scale invariant representation of point features located at various depths. The linearization error of the measurement equation is quantified using a depth estimation model and the feature initialization process is described. In order to verify the performance of the proposed method, the simulation is carried out. Results show that with the proposed method, the SLAM algorithm can achieve better consistency as compared with the existing inverse depth parameterization (IDP) method.
出处 《High Technology Letters》 EI CAS 2012年第3期238-242,共5页 高技术通讯(英文版)
关键词 monocular simultaneous localization and mapping (SLAM) feature initialization depth estimation homogeneous coordinates extended Kahnan filter SLAM 改性 初始化方法 初始化过程 线性化误差 参数化方法 参数设置 估计模型
  • 相关文献

参考文献19

  • 1Davison A J. Real-time simultaneous localization and mapping with a single camera. In: Proceedings of the International Conference on Computer Vision, Nice, France, 2003. 1052-1067.
  • 2Eade E, Drummond T. Scalable monocular SLAM. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006. 469-476.
  • 3Davison A J, Reid I D, Mohon N D, et al. Monoslam real-time single camera slam. IEEE Transactions on Pat tern Analysis and Machine Intelligence, 2007, 29 (6) 1052-1067.
  • 4Holmes S A, Klein G, Murray D W. An 0 (N2) square root unscented Kalman filter for visual simultaneous lo- calization and mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (7) : 1251- 1263.
  • 5Lemaire T, Lacroix S, Sola J. A practical 3D bearing-on- ly SLAM algorithm. In: Proceedings of the International Conference on Intelligent Robots and Systems, Edmon- ton, Canada, 2005. 2449-2454.
  • 6Sola J, Monin A, Devy M, et al. Undelayed initialization in bearing only SLAM. In: Proceedings of the Interna- tional Conference on Intelligent Robots and Systems, Ed- monton, Canada, 2005. 2499-2504.
  • 7Ngai M K, Quang P H, Shoudong H, et al. Mobile robotlocalization and mapping using a Gaussian sum filter. In- ternational Journal of Control, Automation, and Sys- tems, 2007, 5(3):251-268.
  • 8Montiel J M M, Civera J, Davison A J. Unified inverse depth parameterization for monocular SLAM. In: Pro- ceedings of the Robotics : Science and Systems, Philade- phia, USA, 2006. doi: 10.1.97. 2675.
  • 9Pinies P, Lupton T, Sukkarieh S, et al. Inertial aiding of inverse depth SLAM using a monocular camera. In: Pro- ceedings of the International Conference on Robotics and Automation, San Diego, USA, 2007. 2797-2802.
  • 10Pinies P, Tardos J D.-Large Scale SLAM building condi- tionally independent local maps: Application to monocu- lar vision. IEEE Transactions on Robotics, 2008, 24 (5) :1094-1106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部