摘要
研究一类带跳的非线性随机种群收获动力学模型的数值解指数稳定性的问题,给出了外界环境对系统产生影响的条件下带跳的随机收获动力学系统.通过一些特殊不等式,Ito公式及Burkholder-Davis-Gundy不等式,讨论了带Markov随机种群系统数值解的收敛性,得到了数值解指数稳定所满足的充分条件,所得结论是确定性种群系统的扩展.
A harvesting exponential stability of numerical solution for nonlinear stochastic population system with jump is studied with the external environment impact on the system of Markov jump. One sufficient condition for the exponential stability of numerical solution is obtained through some special inequality, Ito formula and Burkholder-Davis-Gundy inequality. The obtained result is the expansion of certainty population system.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2012年第4期472-476,共5页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(11061024)