期刊文献+

带Markov跳随机种群收获系统数值解的指数稳定性 被引量:2

Exponential Stability of Numerical Solutions to Nonlinear Stochastic Harvesting Population System with Markov Jumps
下载PDF
导出
摘要 研究一类带跳的非线性随机种群收获动力学模型的数值解指数稳定性的问题,给出了外界环境对系统产生影响的条件下带跳的随机收获动力学系统.通过一些特殊不等式,Ito公式及Burkholder-Davis-Gundy不等式,讨论了带Markov随机种群系统数值解的收敛性,得到了数值解指数稳定所满足的充分条件,所得结论是确定性种群系统的扩展. A harvesting exponential stability of numerical solution for nonlinear stochastic population system with jump is studied with the external environment impact on the system of Markov jump. One sufficient condition for the exponential stability of numerical solution is obtained through some special inequality, Ito formula and Burkholder-Davis-Gundy inequality. The obtained result is the expansion of certainty population system.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第4期472-476,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11061024)
关键词 Markov跳 随机种群模型 ITO公式 数值解 稳定性 Markovjump stochastic population model Ito formula numerical solution stability
  • 相关文献

参考文献8

  • 1ARNOLD L. Stochastic differential equations: Theory and applications[M]. Detroit: Wiley, 1972.
  • 2ZHANG Qi-min, HAN Chang-zhao. Numerical analysis for stochastic age-structured population equations[J]. Applied Mathmatics and Computation, 2005,169 ( 1 ) : 278-294.
  • 3LI Rong-hua, MENG Hong-bing, CHANG Qin. Convergence of numerical solutions to stochastic age-dependent population equations[J]. Comput Appl Math, 2006, t 93 ( 1 ): 109-120.
  • 4ZHANG Qi-min, LIU Wen-an, NIE Zan-kan. Existence, uniqueness and exponential stability for stochastic age-dependent population[J]. Appl Math Comput, 2004,154 (1): 183-201.
  • 5李鸿.一种单种群收获模型的稳定性分析[J].生物数学学报,2001,16(1):63-69. 被引量:3
  • 6PANG Wan-kai, LI Rong-hua, LIU Ming. Exponential stability of numerical solutions to stochastic age-dependent population equations[J]. Applied Mathematics and Computation, 2006,183 ( 1 ):152-159.
  • 7ZHOU Shao-bo,WU Fu-ke. Convergence of numerical solution to neutral stochastic delay differential equation with Markovian switching[J]. Journal of Computational and Applied Mathematics, 2009,229(1) : 85-96.
  • 8何泽荣,王绵森.一类非线性周期种群系统的最优收获控制[J].应用数学,2003,16(3):88-93. 被引量:10

二级参考文献9

  • 1肖常纪.一种生灭系统的稳定性分析[J].武汉交通科技大学学报,1996,20(1):86-90. 被引量:1
  • 2肖常纪.一种生灭系统的稳定性分析[J].内蒙古大学学报(自然科学版),1996,27(2):172-176. 被引量:2
  • 3Song J. Yu J. Population system control[M]. New York: Springer-Verlag. 1977.
  • 4Anita S. Analysis and control of age-dependent population dynamics[M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 5Anita S. lannelli M. Kim M Y. Park E J. Optimal harvesting for periodic age-dependent population dynamics[J]. SIAM J. Appl. Math. 1998.58 : 1648-1666.
  • 6Barbu V.lannelli M. Optimal control of population dynamics[J]. J Optim. Theo. Appl. 1999,102(1): 1-14.
  • 7Chan W L. Guo Bao Zhu. Optimal birth control of population dynamics[J]. J Math. Anal, Appl, 1989,144:532-552.
  • 8Chan W L.Bao Zhu Guo. Optimal birth control of population dynamics. Part 2. Problems with free final time. phase constraints and mini-max costs[J]. J Math. Anal. Appl, 1990,146 : 523 - 539.
  • 9Barbu V. lannelli M, Martcheva M. On the controllability of the Lotka-Mckendrick model of population dynamics[J]. J Math. Anal. Appl, 2001,253 : 142 - 165.

共引文献11

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部