期刊文献+

面向多目标优化的一种混合进化算法 被引量:2

A Hybrid Evolutionary Algorithm for Multi-objective Optimization Problem
下载PDF
导出
摘要 针对多目标优化问题,设计一种基于量子计算和非支配排序遗传算法相结合的智能算法进行求解,综合量子算法和非支配排序遗传算法的优点,在局部搜索和全局搜索之间进行权衡。混合算法采用量子比特对问题的解进行编码,基于量子旋转门算子、分散交叉算子以及高斯变异算子对种群进行更新。进行局部深入搜索时,用一个解在目标空间中跟理想点的距离来评价该解的优劣;进行全局搜索时,基于非支配排序遗传算法中的有效前沿的划分和解之间的拥挤距离来评价某个解。最后,在经典的测试函数ZDT5上对所提混合算法进行了测试。通过对比分析若干项针对有效解集的评价指标,该混合算法在跟最优有效前沿的逼近程度以及有效解集分布的均匀程度上均优于目前得到广泛应用的非支配排序遗传算法。 A hybrid algorithm combining quantum computing and NSGA-Ⅱ is designed for multi-objective optimization problem. It makes use of the advantages of quantum algorithm and NSGA-II to balance between exploitation and exploration. In hybrid algorithm, Qubit is used to encode solutions to the problem into individuals. The population is updated based on operators of Quantum rotation gate, Scattered crossover and Gaussian mutation. When addressing exploitation, a solution' s distance to an ideal point in objective space is used to evaluate the solution. While in exploration a solution is evaluated by use of classifications of Pareto fronts and the crowding distance between individuals in NSGA-Ⅱ. Finally the hybrid algorithm is tested on a classic benchmark problem "ZDTS". By comparing and analyzing several performance metrics for Pareto solution sets, it is demonstrated that the hybrid algorithm is superior to widely used NSGA-Ⅱ in both proximity to optimal Pareto front and the uni- form distribution of solutions.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第4期15-21,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70902033 71271039) 辽宁省博士启动基金资助项目(20081093) 中央高校基本科研业务费专项基金资助项目(DUT11SX10)
关键词 运筹学 算法改进 量子计算 非支配排序遗传算法 有效解集 operations research improvement of algorithm quantum computing NSGA-Ⅱ Pareto solution set
  • 相关文献

参考文献16

  • 1Li B B, Wang L. A hybrid quantum-inspired genetic algorithm for multiobjeetive flow shop scheduling[ J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2007, 37 (3): 576-591.
  • 2Lei D M. Pareto archive particle swarm optimization for muhi-objeetive fuzzy job shop scheduling problems[ J]. International Journal of Advanced Manufacturing Technology, 2008, 37 (1-2) : 157-165.
  • 3雷德明,严新平.多目标智能优化算法及其应用(第1版)[M].北京:科学出版社,2009:36-50.
  • 4Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach [ J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (4) : 257-271.
  • 5Knowles J D, Corne D W. Approximating the nondominated front using the pareto archived evolution Strategy[ J]. Evolution- ary Computation, 2000, 8(2) : 149-172.
  • 6Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist muhiobjeetive genetic algorithm: NSGA-II[ J]. IEEE Transac- tions on Evolutionary Computation, 2002, 6(2) : 182-197.
  • 7王林,陈璨.一种基于DE算法和NSGA-Ⅱ的多目标混合进化算法[J].运筹与管理,2010,19(6):58-64. 被引量:12
  • 8张超勇,董星,王晓娟,李新宇,刘琼.基于改进非支配排序遗传算法的多目标柔性作业车间调度[J].机械工程学报,2010,46(11):156-164. 被引量:139
  • 9王波,吴振森,赵振维,王红光.雷达杂波反演低空大气折射率剖面的改进算法[J].系统工程与电子技术,2010,32(8):1652-1656. 被引量:5
  • 10Li P C, Li S Y. Quantum-inspired evolutionary algorithm for continuous space optimization based on bloch coordinates of qu- bits [ J]. Neurocomputing, 2008, 72 ( 1-3 ) : 581-591.

二级参考文献36

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:113
  • 2蔺发军,刘成国,成思,杨玉萍.海上大气波导的统计分析[J].电波科学学报,2005,20(1):64-68. 被引量:83
  • 3陈小庆,侯中喜,郭良民,罗文彩.基于NSGA-II的改进多目标遗传算法[J].计算机应用,2006,26(10):2453-2456. 被引量:43
  • 4吴秀丽,孙树栋,杨展,翟颖妮.多目标柔性Job Shop调度问题的技术现状和发展趋势[J].计算机应用研究,2007,24(3):1-5. 被引量:19
  • 5GAREY E L,JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J].Mathematics of Operations Research,1976,1:117-129.
  • 6DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 7CRONE D W,KNOWLES J D,OATES M J.The pareto envelope-based selection algorithm for multi-objective optimization[C] //SCHOENAUER M,DEB K,RUDOLPH G,et al.Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference,Paris,France.Lecture Notes in Computer Science:Springer,2000,1 917:839-848.
  • 8KNOWLES J,CORNE D.The Pareto archived evolution strategy:a new baseline algorithm for multiobjective optimization[C] //Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:98-105.
  • 9ZITZLER E,THIELE L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000:8(2):173-195.
  • 10SRINIVAS N,DEB IC Multi-objective function optimization using non-dominated sorting genetic algorithm[J].Evolutionary Computation.1995,2(3):221-248.

共引文献153

同被引文献39

  • 1唐恒永,赵琨.带有资源消耗的加权总完工时间单机排序问题[J].系统工程与电子技术,2004,26(11):1601-1603. 被引量:3
  • 2Shabtay D, Steiner G. A survey of scheduling with controllable processing times [ J ]. Discrete Applied Mathematics, 2007, 155(13) : 1643-1666.
  • 3Akturk M S, Atamturk A, Gurel S. Parallel machine match-up scheduling with manufacturing cost considerations[ J]. Journal of Scheduling, 2010, 13 ( 1 ) : 95-110.
  • 4Vickson R G. Choosing the job sequence and processing times to minimize total processing plus flow cost on a single machine [ J ]. Operations Research, 1980, 28 ( 5 ) : 1155-1167.
  • 5Wan G H, Yen B, Li C L. Single machine scheduling to minimize total compression plus weighted flow cost is NPhard[ J ]. Information Processing Letters, 2001, 79 (6) : 273 -280.
  • 6Janiak A, Kovalyov M Y, Kubiak W, et al. Positive half-product and seheduling with controllable proeessing times [ J ]. European Journal of Operational Research, 2005, 165(2) : 413-422.
  • 7Wang J B, Xia Z Q. Single machine scheduling problems with controllable processing times and total absolute differences penalties[ J ]. European Journal of Operational Research, 2007, 177 ( 1 ) : 638- 645.
  • 8Cheng T C E, Janiak A. Resource optimal control in some single-machine scheduling problem [ J ]. IEEE Transactions on Automatic Control, 1994, 39 ( 6 ) : 1243-1246.
  • 9Jansen K. , Mastrolilli M. Approximation schemes for parallel machine scheduling problem with controllable processing times [ J ], Computers & Operations Research, 2004, 31(10) : 1565-1581.
  • 10Cheng T C E, Chen Z L, Li C L, Single-machine scheduling with trade-off between number of tardy jobs and resource allocation [J]. Operations Research Letters, 1996, 19(5): 237-242.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部