期刊文献+

腐殖质/铁氧化物协同促进2,4-D微生物厌氧降解 被引量:3

Enhanced Biotransformation of 2,4-D by Fe(Ⅲ)/Humus-reducing Bacteria with Addition of Iron Oxide and Humus Analog
下载PDF
导出
摘要 构建"铁/腐殖质还原菌(Comamonas koreensis,CY01)、腐殖质模式物、铁氧化物、2,4-D"厌氧反应体系,研究2,4-D转化效率与转化途径,探讨2,4-D转化促进机制。结果表明,CY01对2,4-D的直接脱氯效果微弱,蒽醌-2,6-二磺酸钠(AQDS)与针铁矿(α-FeOOH)的加入可有效促进2,4-D厌氧转化,25 d时降解率提高2倍,达33.3%。CY01/AQDS/α-FeOOH/2,4-D体系中,AQDS、Fe(Ⅲ)及2,4-D微生物还原3种过程同时存在,AQDS和Fe(Ⅲ)充当电子穿梭体,加速胞内电子向胞外2,4-D的转移,协同促进2,4-D还原脱氯。本研究可为难降解有机氯农药污染土壤的修复研究提供借鉴。 The biotransformation of 2,4-D was studied in an anaerobic system of Fe(Ⅲ)/humus-reducing bacteria(Comamonas koreensis,CY01)/humus analog/iron oxide/2,4-D.The results showed that the CY01 biotic system alone exhibited low 2,4-D dechlorination rate,and the rate was significantly accelerated by the presence of iron oxide(α-FeOOH) and humus analog(sodium anthraquinone-2,6-disulphonate,AQDS).On the 25th day,2,4-D biodegradation efficiency increased two times to 33.3% in the CY01/AQDS/α-FeOOH treatment than in CY01 biotic treatment.Fe(Ⅲ)/AQDS reduction and 2,4-D biodegradation by strain CY01 occurred simultaneously.AQDS and α-FeOOH could severed as the electron shuttles between the strain CY01 and 2,4-D to facilitate 2,4-D reductive dechlorination.The study would be helpful for exploring in-situ remediation strategies of organic chlorine pesticides-contaminating sites in iron oxide or humus-rich environments.
出处 《现代农药》 CAS 2012年第5期15-19,共5页 MODERN AGROCHEMICALS
基金 国家自然科学基金资助项目(41101477)
关键词 铁/腐殖质还原菌 2 4-D 电子穿梭体 还原脱氯 Fe(Ⅲ)/humus-reducing bacteria 2 4-D electron shuttle reductive dechlorination
  • 相关文献

参考文献13

  • 1Chinalia F A, Killham K S. 2,4-Dichlorophcnoxyacetic Acid (2,4-D) Biodegradation in River Sediments of Northeast-Scotland and Its Effect on the Microbial Communities (PLFA and DGGE) [Y]. Chemosphere, 2006, 64 (10): 1675 - 1683.
  • 2Cox C. 2,4-D: Toxicology, Part 1 [J]. J Pestic Reform, 1999, 19(1): 14 - 19.
  • 3Willemsen R E, Hailey A. Effects of Spraying the Herbicides 2,4-Dand 2,4,5-T on a Population of the Tortoise Testudo hermanni inSouthern Greece [J].Environ Pollut, 2001,113 (1): 71 - 78.
  • 4Cervantes F J, Vu-Thi-Thu L, Lettinga G,et al. Quinone-respirationImproves Dechlorination of Carbon Tetrachloride by AnaerobicSludge [J].Appl Microbiol Biotechnol, 2004,64 (5): 702 - 711.
  • 5Lovley D R, Holmes D E,Nevin K P. Dissimilatory Fe(III) and Mn(IV)Reduction [J].Adv Microb Physiol, 2004, 49: 219 - 286.
  • 6李晓敏,李永涛,李芳柏,周顺桂,冯春华,刘同旭.有机氯脱氯转化的铁还原菌与铁氧化物界面的交互反应[J].科学通报,2009,54(13):1880-1884. 被引量:14
  • 7Li F B, Li X M, Zhou S G, et al. Enhanced Reductive Dechlorination ofDDT in an Anaerobic System of Dissimilatory Iron-reducing Bacteriaand Iron Oxide [J].Environ Pollut, 2010,158 (5): 1733 - 1740.
  • 8Wu Chunyuan, Zhuang Li, Zhou Shungui, et al. Fe(III)-enhancedAnaerobic Transformation of 2,4-Dichlorophenoxyacetic Acid by anIron-reducing Bacterium Comamonas koreensis CY01 [J].FEMSMicrobiol Ecol, 2010,71 (1): 106 - 113.
  • 9Li F B, Li X Z, Li X M, et al. Heterogeneous Photodegradation ofBisphenol A with Iron Oxides and Oxalate in Aqueous Solution [J].JColloid Interface Sci, 2007,311 (2): 481 - 490.
  • 10Zachara J M,Fredrickson J K, Li Shumei, et al. Bacterial Reduction ofCrystalline Fe3+ Oxides in Single Phase Suspensions and SubsurfaceMaterials [J].Am Mineral, 1998,83: 1426 - 1443.

二级参考文献27

  • 1Lovley D R, Coates J D, Blunt-harris E L, et al. Humic substances as electron acceptors for microbial respiration[J].Nature, 1996, 382: 445-.448.
  • 2Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(Ⅲ) and Mn (Ⅳ) reduction [J]. Adv Microb Physiol, 2004, 49: 219-286.
  • 3Lovley D R, Phlillips E J P, Gorby Y A, et al. Microbial reduction of uranium[J].Nature, 1991, 350: 413-416.
  • 4Gralnick J A. Newman D K. Extracellular respiration [J]. Molecular Microbiology, 2007, 65(1) : 1-11.
  • 5Coates J D, Cole K A, Chakraboty R, et al. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration [J]. Appl Environ Microbiol, 2002, 60(5):2445-2452.
  • 6Jiang J, Kappler R. Kinetics of microbial and chemical reduction of huntic substances: Implications for electron shuttling [ J ]. Environ Sci Technol, 2008, 42(10): 3563-3569.
  • 7Van Trump J I, Sun Y, Coates J D. Microbial interactions with humic substances [J]. Adv Appl Microbiol, 2006, 60: 55-96.
  • 8Fredrickson J K, Gorby Y A. Environmental processes mediated by iron-reducing bacteria [ J]. Curr Opin Biotechnol, 1996, 7 ( 3 ) : 287-294.
  • 9Benz M, Schink B, Brune A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria [J]. Appl Environ Microbiol, 1998, 64(11): 4507-4512.
  • 10Luijten M L, Weelink S A, Godsehalk B, et al. Anaerobic reduction and oxidation of quinnne moieties and the reduction of oxidized metals by halorespiring and related organisms [J]. FEMS Microbiol Eco, 2004, 49(1): 145-150.

共引文献16

同被引文献101

  • 1郑国砥,陈同斌,高定,罗维,李艳霞.好氧高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学,2005,25(1):6-9. 被引量:106
  • 2吕世华.四川紫色丘陵区土有效铁含量与临界值探讨[J].耕作与栽培,1995,15(5):50-52. 被引量:5
  • 3常晓雷,康勇,冯颖.硫酸盐还原菌与单质铁协同作用处理酸性含锌废水[J].中国有色金属学报,2006,16(9):1647-1652. 被引量:6
  • 4郑丹,阎静,陶光灿,李鹏,郭鹏,崔宗均,宋卫堂,谢光辉.添加无机肥料对高温堆肥化及磷素有效性的影响[J].农业环境科学学报,2006,25(6):1631-1635. 被引量:15
  • 5NEWSOME L, MORRIS K, LLOYD J R. The biogeochemistry and bioremediation of uranium and other priority radionuclides[J]. Chemical Geology, 2014, 363: 164-184.
  • 6WINDT D W, BOON N, BULCKE J V D, RUBBERECHT L, PRATA F, Mast J, HENNEBEL T, WILLY V. Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis[J]. Antonie Van Leeuwenhoek, 2006, 90(4~: 377-389.
  • 7ICOP1NI G A, LACK J C~ HERSMAN L E, NEU M P, BOUKHALFA H. Plutonium(V/V[) reduction by the metal- reducing bacteria Geobacter metallireducens GS- 15 and Shewanella oneidensis MR-I[J]. Applied and Environmental Microbiology, 2009, 75(11): 3641-3647.
  • 8YAN F F, WU C, CHENG YY, HEYR, LI WW, YU H Q. Carbon nanotubes promote Cr( VI ) reduction by alginate- immobilized Shewanella oneidensis MR-I[J]. Biochemical Engineering Journal, 2013, 77(1): 183-189.
  • 9OLLHOPF M E, NEALSON K H, SIMON D M, LUTHER G W. Kinetics of Fe(III) and Mn(IV) reduction by the black sea strain of Shewanella putrefaciens using in situ solid state voltammetric Au/Hg electrodes[J]. Marine Chemistry, 2000, 70(1): 171-180.
  • 10CROSBY H A, RODEN E E, JOHNSON C M, BEARD B L. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobactersulfurredueens[J]. Geobiology, 2007, 5(1): 169-189.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部