期刊文献+

基于脑电事件相关电位的功能性网络分析 被引量:4

Analysis of Brain Functional Network Based on Event-Related Potential
下载PDF
导出
摘要 利用视觉空间注意事件相关电位(ERP)构建了功能性网络;计算并分析了该网络的聚类系数;提出了一个适用的复杂网络统计参数即成对区域连接边数百分比;研究了ERP网络的特性及注意、刺激视野区域对该网络的影响。该聚类系数显著大于相应的随机网络的聚类系数,验证了网络的小世界特性。成对区域连接边数百分比显示刺激对侧大脑前后部的连接显著比刺激同侧大脑前后部的连接强。发现注意和非注意条件下的两个复杂网络参数有明显的不同,说明这两个参数能反映不同实验条件的大脑动力学特性。新的复杂网络统计参数的提出是研究各种认知任务下大脑动力学特性的一种有效的方法。 Event-related potential (ERP) measurements are used to build functional network of spatial attention. The clustering coefficient is picked for analyzing this complex network. One new statistical parameter of existing edges percent between paired regions of interest (ROI) is proposed for analyzing ERP networks. Upon this, the properties of ERP functional network and the influences of locations of attention and stimulus are investigated. The fact that the clustering coefficient of ERP network is bigger than that of equivalent random network demonstrates the small world property of ERP network. Comparing existing edges percent between four ROI, the result shows that more edges exist between tile stimulus contralateral posterior and anterior brain regions than those in ipsilateral regions. The statistical parameters of ERP networks between attention and unattention are obviously different, which indicates these parameters might be important indices of reflecting the ongoing brain dynamics. Proposal of new statistical parameters of complex networks may be a useful approach to study detailedly the connectivity of brain in various cognitive tasks.
作者 李凌 黎源
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期792-795,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(30800242 91120016)
关键词 功能性脑网络 聚类系数 事件相关电位 小世界特性 统计检验 brain functional network clustering coefficient event-related potential small-world statistical tests
  • 相关文献

参考文献13

  • 1FRISTON K J, FRITH C D, LIDDLE P F, ct al. Functional connectivity: the principal component analysis of large (PET) data sets[J]. J Cereb Blood Flow Metab, 1993, 13(1): 5-14.
  • 2FRISTON-K J, FRITH C D, FRACKOWIAK R S J. Time-dependent changes in effective connectivity measured with PET[J]. Hum Brain Mapp, 1993, 1(1): 69-79.
  • 3HORWITZ B. The elusive concept of brain connectivity[J]. Neuroimagc, 2003, 19(2): 466-470.
  • 4LEE L, HARRISON L M, MECHELLI A. A report of the functional connectivity workshop, Dusseldorf 2002[J]. Neuroimage, 2003, 19(2): 457-465.
  • 5GOEBEL R, ROEBROECK A, KIM D S, et al. Investigating directed cortical interactions in time-resolved tMRI data using vector autoregressive modeling and Granger causality mapping[J]. Magn Reson Imaging, 2003, 21(10): 1251-1261.
  • 6FRISTON K J, HARRISON L, PENNY W. Dynamic causal modelling[J]. Neuroimage, 2003, 19(4): 1273-1302.
  • 7FRISTON K J, BUCHEL C, FINK G R, ct al. Psychophysiological and modulatory intcractions in Ncuroimaging[J]. NcuroImagc, 1997, 6(3): 218-229.
  • 8MC1NTOSH A R, GONZALEZ-LIMA E Structural equation modeling and its application to network analysis in functional brain imaging[J]. Hum Brain Mapp, 1994, 2(1-2): 2-22.
  • 9STAM C J, JONES B F, NOLTE C t al. Small-world networks and functional connectivity in Alzheimer's disease[J]. Cercb Cortex, 2007, 17(1): 92-99.
  • 10STAM C J, DE HAAN W, DAFFERTSHOFER A, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease[J]. Brain, 2009, 132(1): 213-224.

同被引文献37

  • 1谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3. 被引量:127
  • 2王兴元,骆超,邱天爽.HAI实验中EEG信号的非线性动力学研究[J].中国生物医学工程学报,2005,24(4):408-415. 被引量:8
  • 3方小玲,姜宗来.基于脑电图的大脑功能性网络分析[J].物理学报,2007,56(12):7330-7338. 被引量:27
  • 4Friston K J,Frith C D,Liddle P F,et al.Functional connectivity:the principal component analysis of large(PET)data sets[J].Journal of Cerebral Blood Flow & Metabolism,1993,13(1):5-14.
  • 5Friston K J,Frith C D,Frackowiak R S J.Time-dependentchanges in effective connectivity measured with PET[J].Hum Brain Mapp,1993,1(1):69-79.
  • 6Friston K J.Functional and effective connectivity:a review[J].Brain Connectivity,2011,1(1):13-36.
  • 7Goebel R,Roebroeck A,Kim D S,et al.Investigating directedcortical interactions in time-resolved fMRI data using vectorautoregressive modeling and Granger causality mapping[J].Magn Reson Imaging,2003,21(10):1251-1261.
  • 8Friston K J,Harrison L,Penny W.Dynamic causal modeling[J].Neuroimage,2003,19(4):1273-1302.
  • 9Friston K J,Buchel C,Fink G R,et al.Psychophysiologicaland modulatory interactions in neuroimaging[J].Neuroimage,1997,6(3):218-229.
  • 10Mcintosh A R,Gonzalez-Lima F.Structural equation modelingand its application to network analysis in functional brainimaging[J].Hum Brain Mapp,1994,2(1/2):2-22.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部