期刊文献+

基于SIFT算法的目标特征检测与提取技术研究 被引量:3

Research on target feature detecting and extracting technologies based on SIFT algorithm
下载PDF
导出
摘要 验证了一种能够在不同图像之间进行同一个物体相匹配的方法,具有很强的可靠性,称之为SIFT算法(尺度不变特征变换)。SIFT算法能够处理图像间发生的尺度变换、旋转、很大范围内的仿射形变、视角变换、噪声以及光照变换。它的功能十分强大,甚至可以仅仅根据一个简单的物体特征,在一个大型数据库中的许多高品质图像中进行相应目标的寻找与匹配。 A method is tested and verified for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene, which is named as Scale Invariant Feature Transform. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images.
作者 阎冲
出处 《传感器世界》 2012年第9期22-26,共5页 Sensor World
关键词 SIFT 特征检测 图像匹配 SIFT feature detection image matching
  • 相关文献

参考文献6

  • 1王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 2钟力,胡晓峰.重叠图象拼接算法[J].中国图象图形学报(A辑),1998,3(5):367-370. 被引量:119
  • 3M. Brown and D. Lowe. Invariant Features from Interest Point Groups[A] .Proceedings of the 13th British Machine Vision Conference[C], Cardiff, 2002:252-262.
  • 4DUCH W, Heural minimal distance methods [A] PIOC of the 3rd Confeience on Neural Networks and Their Applications[C].Kule:[sn], 1997:183-188.
  • 5L NDEBERG T Feature detection with automatic scale selection [J] InternationalJoumalofComputerVision 1998, 30(2):79-116.
  • 6CHO S Y, WONG Jia jun. Probabilistic based recursive model for face recognition JR] Lecture Notes in Computer Science 3641. [ S. 1.]: Sp ringer Verlag, 2005:1245 21254.

二级参考文献10

  • 1钟力,胡晓峰.全景视频的信息组织和实现方法[J].小型微型计算机系统,1996,17(12):1-5. 被引量:13
  • 2[3]Kuglin C D,Hines D C.The Phase Correlation Image alignment method[C].IEEE Conference on Cybernetics and Society,New York,1975:163-165.
  • 3[4]David G Lowe.Object Recognition from Local Scale-Invariant Features[C].7th International Conference on Computer Vision,1999:1150-1157.
  • 4[5]David G Lowe.Distinctive Image Features from Scale-Invariant Interest Points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 5[6]Harris C Stephens.A Combined Corner and Edge Detector[J].4th Alvey Vision Conference.1988,60(2):147-151.
  • 6[7]Faugeras O,Robert L.What can two images tell us about the third one[C].Proceedings of the Europe Conference on Computer Vision,Sweden,1994.
  • 7[8]Koenderink J.The structure of images[J].Biological Cybernetics,1984,50:363-396.
  • 8[9]Lindeberg T.Scale-Space for discrete Signals[J].IEEE Transactions PAMI,1980,207:187-217.
  • 9[10]Babaud J,Witkin A P,Baudin Metal.Uniqueness of the Gaussian kernel for scale-space filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,8(1):26-33.
  • 10钟力,胡晓峰.重叠图象拼接算法[J].中国图象图形学报(A辑),1998,3(5):367-370. 被引量:119

共引文献140

同被引文献11

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部