摘要
验证了一种能够在不同图像之间进行同一个物体相匹配的方法,具有很强的可靠性,称之为SIFT算法(尺度不变特征变换)。SIFT算法能够处理图像间发生的尺度变换、旋转、很大范围内的仿射形变、视角变换、噪声以及光照变换。它的功能十分强大,甚至可以仅仅根据一个简单的物体特征,在一个大型数据库中的许多高品质图像中进行相应目标的寻找与匹配。
A method is tested and verified for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene, which is named as Scale Invariant Feature Transform. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images.
出处
《传感器世界》
2012年第9期22-26,共5页
Sensor World