期刊文献+

实体法铣削仿真效率改善及应用算法 被引量:1

Algorithm of Efficiency Improvement and Application in Milling Simulation Based on Solid Modeling
下载PDF
导出
摘要 轴向切削深度和径向切削宽度是铣削仿真模型求解的几何边界条件,也称为啮合几何参数。根据对啮合参数提取的三类途径的比较,针对直接布尔操作途径仿真效率低的问题,运用集合论描述了实体法铣削仿真中模拟材料去除的布尔运算过程,从时间复杂性角度分析影响实体法铣削仿真效率的因素,提出改善仿真运行效率的4种途径;在此基础上,从几何造型和切削过程两方面给出在仿真计算位置处布尔运算次数由4次减少为1次的可行性分析,提出在简化布尔运算次数情况下的切削几何边界条件的识别和判断算法,对判断算法的有效性和减少布尔运算的时间复杂性进行分析、给出在铣削力仿真中的应用示例,并说明应用范围,从而在保证切削几何边界条件准确提取的同时提高仿真效率,为铣削力等仿真模型的求解奠定基础,推动相关物理仿真研究成果在工程实际中得到切实应用。 Axial cutting depth and radial cutting width,namely the engagement geometric parameters,are geometric boundary conditions for the solution of milling force models.Based on the comparison of three approaches in extracting the engagement parameters,in order to promote the simulation efficiency of the direct boolean operation approach,the boolean computation to simulating the course of material removal in solid based milling simulation are described by set theory,and the efficiency influence factors of the solid modeling based milling simulation system are analyzed according to time complexity,and the improvement approaches of simulation efficiency are proposed.The feasibility analysis to reducing the Boolean operation number from 4 to 1 at the computing position during simulation are processed,the algorithm to identify and judge the corresponding cutting geometric boundary conditions are presented,the theoretic effect and the application restriction are explained,and the application example in milling force simulation are provided.By this way,the simulation efficiency can be improved and at the same time the veracity of the extracted cutting boundary parameters are ensured,so the actual application in real engineering of such physical simulation models as cutting force are promoted.
作者 刘胤 郑力
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第17期189-198,共10页 Journal of Mechanical Engineering
关键词 铣削仿真 切削几何边界条件 实体法 计算复杂性 Milling simulation Cutting geometric boundary condition Solid modeling Computing complexity
  • 相关文献

参考文献19

  • 1刘胤,郑力,刘大成,张智海.铣削啮合几何参数提取方法的研究[J].机械设计与制造,2005(9):89-91. 被引量:1
  • 2FENG H Y, MENG C H. The prediction of cutting forces in the ball-end milling process- II : Cut geometry analysis and model verification[J]. Int. J. Mach. Tools Manuf., 1994, 34(5): 711-719.
  • 3LEE T S, L1N Y J. A 3D predictive cutting-force model for end milling of parts having sculptured surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(11): 773-783.
  • 4OZTURK B, LAZOGLU I. Machining of free-form surfaces, part I: Analytical chip load[J]. International Journal of Machine Tools & Manufacture, 2006, 46.. 728-735.
  • 5WANG W P, WANG K K. Real-time verification of multiaxis NC programs with raster graphics[C]// Proceedings 1986 IEEE International Conference on Robotics and Automation, April 7-10, 1986, San Francisco, CA, USA. New York: IEEE, 1986, 3: 166-171.
  • 6FUSSELL B K, JERARD R B, HEMMETT J G. Robust feedrate selection for 3-axis NC machining using discrete models[J]. Trans. ASME J. Manufact. Sci. Engng., 2001, 123(2): 214-224.
  • 7GUO D M, REN F, SUN Y W. An approach to modeling cutting forces in five-axis all-end milling of curved geometries based on tool motion analysis[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132: 0410041-8.
  • 8BERTOK P, MATSUSHIMA K, OTSUKA J, et al. A system for monitoring the machining operation by referring to a predicted cutting torque pattern[J]. Ann. CIRP., 1983, 32(1): 439-444.
  • 9DEWAELE M, KINZEL G L. Speed improvements for NC program verification using solid modeling[C]// Proceedings ASME International Computers in Engineering Conference and Exposition. 1989: 601-607.
  • 10LIM E M, MENQ C H. The prediction of dimensional error for sculptured surface productions using the ball-end milling process part 2: Surface generation model and experimental verification[J]. International Journal of Machine Tools and Manufacture, 1995, 35(8): 1171-1185.

二级参考文献12

  • 1刘胤,郑力,李志忠,张伯鹏.铣削加工几何仿真的方法分析[J].制造业自动化,2003(z1):382-387. 被引量:1
  • 2Ehmann K F, Kapoor S G, Devor R E, et al, Machining process modeling: A review [J]. J Manuf Sci Eng, Trans of the ASME, 1997, 119(4B): 655-663.
  • 3Martellotti M E. An analysis of the milling process [J]. ASME- Trans, 1941, 63(8): 677-700.
  • 4Spence A D, Abrari F, Elbestawi W A. Integrated solid modeler based solutions for machining [J]. Computer Aided Design, 2000, 32(8-9): 553-568.
  • 5LI Zhizhong, ZHENG Min, ZHENG Li, et al. A solid model-based milling process simulation and optimization system integrated with CAD/CAM [J]. J Mater Process Technol, 2003, 138(1-3): 513-517.
  • 6Oliver J H, Goodman E D, Direct Dimensional NC Verification, Comput. Aided Des. 1990 22(1): 3~ 9.
  • 7Wang W P, Wang K K, Geometric Modeling for Swept Volume of Moving Solids, IEEE Comput. Graph. Appl. 1986, 6(12): 8~ 17.
  • 8Fussell B K, Ersoy C, Jerard R B, Computer Generated CNC Machining Feedrates, Proc. 92 Japan USA Symposium on Flexible Automation, 1992, 377~ 384, ASME.
  • 9Fussell BK, Jerard R B, Hemmett J G, Robust Feedrate Selection for 3-Axis NC Machining using Discrete Models, Trans ASME, J Manuf Sci Eng, 2001, 123(1): 214~ 224.
  • 10Feng H Y, Menq C H, The Prediction of Cutting Forces in the Ball-End Milling Process-Ⅱ . Cut Geometry Analysis and Model Verification, Int. J. Mach. Tools Manuf. 1994, 34(5): 711~ 719.

共引文献4

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部