期刊文献+

Empirical Likelihood Analysis of Longitudinal Data Involving Within-subject Correlation 被引量:2

Empirical Likelihood Analysis of Longitudinal Data Involving Within-subject Correlation
原文传递
导出
摘要 In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlation is considered to improve estimation efficiency. We suppose a semi-parametric structure for the covariances of observation errors in each subject and employ both the first order and the second order moment conditions of the observation errors to construct the estimating equations. Although there are nonparametric variable in distribution after estimators, the empirical log-likelihood ratio statistic still tends to a standard Xp2 the nuisance parameters are profiled away. A data simulation is also conducted. In this paper we use profile empirical likelihood to construct confidence regions for regression coefficients in partially linear model with longitudinal data. The main contribution is that the within-subject correlation is considered to improve estimation efficiency. We suppose a semi-parametric structure for the covariances of observation errors in each subject and employ both the first order and the second order moment conditions of the observation errors to construct the estimating equations. Although there are nonparametric variable in distribution after estimators, the empirical log-likelihood ratio statistic still tends to a standard Xp2 the nuisance parameters are profiled away. A data simulation is also conducted.
作者 Shuang HU Lu LIN
机构地区 School of Mathematics
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第4期731-744,共14页 应用数学学报(英文版)
基金 Supported by NBRP (973 Program 2007CB814901) of China NNSF project (10771123) of China RFDP(20070422034) of China NSF projects (ZR2010AZ001) of Shandong Province of China
关键词 partially linear model longitudinal data within-subject correlation empirical-likelihood partially linear model, longitudinal data, within-subject correlation, empirical-likelihood
  • 相关文献

参考文献15

  • 1Cheng, S.C., Wei, L.J. Inferences for a semiparametric model with panel data. Biometrika., 85: 967—972 (2000).
  • 2Fan, J. Li, R.Z. New estimation and model selection precedures for semiparametric modeling in longitudinal data analysis. J. Am. Statist. Assoc., 99: 710—723 (2004).
  • 3Fan, J. Gijbels, I. Data-driven bandwidth selection in local polynomial fitting: variable bandwidth a nd spatial adaptation. J. R. Statist. Soc., B 57: 371—394 (1995).
  • 4Fan, J., Yao, Q. Efficient estimation of conditional variance functions in stochastic regression. Biometrika., 85: 645-660 (1998).
  • 5He, X., Zhu, Z.Y., Fung, W.K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika., 89: 579—590 (2002).
  • 6Hoeffding, W., Robbins, H. The central limit theorem for dependent random variables. Duke Mathematical Journal., 15: 773-780 (1948).
  • 7Hu, Z.H., Wang, N., Carroll, R.J. Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data. Biometrika., 91: 251-262 (2004).
  • 8Lin, D.Y., Ying, Z. Semiparametric and nonparametric regression analysis of longitudinal data (with discussion). J. Am. Statist. Assoc., 96: 103—126 (2001).
  • 9Lin, X.H., Carroll, R.J. Semiparametric regression for clustered data using generalized estimating equations. J. Am. Statist. Assoc., 96: 1045-1056 (2001).
  • 10Moyeed, R.A., Diggle, P.J. Rates of convergence in semiparametric modelling of longitudinal data. Aust. J. Statist., 36: 75-93 (1994).

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部