期刊文献+

一种离散隐Markov模型参数的全局优化算法 被引量:4

A Global Optimization Algorithm for Discrete HMM
下载PDF
导出
摘要 隐Markov模型(离散HMM)的参数估计问题,是HMM在语音处理应用中的关键问题。经典的Baum_Welch算法是基于最陡梯度下降的局部优化算法,HM M模型的质量取决于初始模型的设计。解决这一问题的根本方法在于使算法具有随机性。本文结合随机松弛算法(SR)的全局搜索能力和Baum_Welch算法的局部优化性能,提出了一种离散隐 Markov模型参数的全局优化算法。该算法根据 HMM的参数对 P(O/λ)的不同影响,对观察值概率矩阵B进行满足一定降温规范的随机扰动,可对离散HMM的参数进行全局优化训练。 The training of HMM is the key problem for speech processing. Because the application of conventional Baum_Welch algorithm tends to arrive at a local optimization, a global optimization algorithm based on stochastic relaxation(SR) algorithm is proposed. According to the different influence of each parameter upon P(O/λ), a stochastic perturbation satisfying some temperature specification is added to the observation value probability matrix B to optimize the discrete HMM parameter globally.
出处 《电路与系统学报》 CSCD 2000年第3期78-81,共4页 Journal of Circuits and Systems
基金 国家自然科学基金!(69872036)
关键词 离散HMM 全局优化 MARKOV模型 语音识别 discrete Hidden Markov models stochastic relaxation global optimization Baum_Welch algorithm,
  • 相关文献

参考文献6

  • 1Bahl L R, Brown P F. et al. Maximum Mutual Information Estimation of Hidden Markov Model Parameters for Speech Recognition[A]. IEEE Proc. ICASSP'86[C], 1986.49~52.
  • 2Bahl L R et al. A New Algorithm for the Estimation of Hidden Markov Model Parameters[A]. IEEE Proc. ICASSP'88[C], 1988.493~496.
  • 3Chau C W, Kwong S,Diu C K,Fahrner w R.Optimization of HMM by a Genetic Algorithm[A].1997年声学、语言及信号处理国际会议论文集,Vo1.3:Speech Processing,Digital Signal Processing[C],1997.1727~1730.
  • 4孙放,胡光锐,徐雄.利用基因算法训练连续隐马尔柯夫模型的语音识别[J].上海交通大学学报,1998,32(6):19-22. 被引量:2
  • 5Geman W S, et al. Stochastic relaxation, Gibbs distributions and Bayesian restoration of images[J]. IEEE Trans. PAMI-6, Nov. 1984:721~741.
  • 6Juang B H, et al. A Probabilistic Distance Measure for Hidden Markov Models[J]. AT&T Technical Journal. Feb 1985, 64 (2): 391~408.

二级参考文献1

  • 1Hung S L,IEEE Trans Neural Netw,1994年,5卷,6期,900页

共引文献1

同被引文献27

  • 1张玲华,郑宝玉,杨震.基于LPC分析的语音特征参数研究及其在说话人识别中的应用[J].南京邮电学院学报(自然科学版),2005,25(6):1-6. 被引量:13
  • 2王建雄,刘应龙.基于人工神经网络的数字识别系统的研究[J].计算机技术与发展,2006,16(5):26-27. 被引量:10
  • 3Qin Feng,Auerbach A,Sachs F.Estimating single channel kinetic parameters from idealized patch-clamp data containing missed events[J].Biophys J,1996,70(1):264-280.
  • 4Venkataramanan L,Sigworth F.J.Applying hidden Markov models to the analysis of single ion channel activity[J].Biophys J,2002,82(4):1930-1942.
  • 5Logothetis A,Krishmurthy V.Expectation maximization algorithm for MAP estimation of jump Markov linear systems[J].IEEE Trans on Signal Processing,1999,47(8):2139-2156.
  • 6Chung SH,Moore JB,Xia Lin,et al.Characterization of single channel currents using digital signal processing techniques based on hidden Markov models[J].Phil Trans:Boil.Sci,1990,329(1254):265-285.
  • 7Qin Feng,Auerbach A,Sachs F.A direct optimization approach tc hidden Markov modeling for single channel kinetics[J].Biophys J,2000,79(4):1915-1927.
  • 8Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J].Proceedings of the IEEE,1989,(02):261.
  • 9L.R.Rabiner,B.H.Juang. Recognition of isolated digits using hidden Markov models with continuous density[J].AT & T Technical Journal,1986,(06):1211-1222.
  • 10rI~AKURA F.Minimum Prediction Residual Principle Ap- plied to Speech Recognition[ J] .IEEE Trans.ASSP, 1975, 23(1) :67-72.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部